Skip to main content

Erlangen Program at Large: An Overview

  • Conference paper
  • First Online:
Advances in Applied Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

This is an overview of the Erlangen Program at Large. Study of objects and properties, which are invariant under a group action, is very fruitful far beyond traditional geometry. In this paper we demonstrate this on the example of the group SL2(ℝ). Starting from the conformal geometry we develop analytic functions and apply these to functional calculus. Finally we link this to quantum mechanics and conclude by a list of open problems.

Mathematics Subject Classification (2010). Primary 30G35; Secondary 22E46, 30F45, 32F45, 43A85, 30G30, 42C40, 46H30, 47A13, 81R30, 81R60.

A mathematical idea should not be petrified in a formalised axiomatic setting, but should be considered instead as flowing as a river.

Sylvester (1878)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Agostini, S. Caprara, and G. Ciccotti, Do we have a consistent non-adiabatic quantum-classical mechanics?, Europhys. Lett. EPL 78 (2007), no. 3, Art. 30001, 6. doi: 10.1209/0295-5075/78/30001. MR2366698 (2008k:81004) 59

    Google Scholar 

  2. Syed Twareque Ali, Jean-Pierre Antoine, and Jean-Pierre Gazeau, Coherent states, wavelets and their generalizations, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 2000. MR2002m:81092 22, 23, 24, 25, 29

    Google Scholar 

  3. Robert F.V. Anderson, The Weyl functional calculus, J. Functional Analysis 4 (1969), 240–267. MR58#30405 40, 41

    Google Scholar 

  4. V.I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1991. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, corrected reprint of the second (1989)ed ition. MR96c:70001 53, 73

    Google Scholar 

  5. Damir Z. Arov and Harry Dym, 𝐽-contractive matrix valued functions and related topics, Encyclopedia of Mathematics and its Applications, vol. 116, Cambridge University Press, Cambridge, 2008. MR2474532 18

    Google Scholar 

  6. M.B. Balk, Polyanalytic functions and their generalizations [MR1155418 (93f: 30050)], Complex analysis, I, 1997, pp. 195–253. MR1464199 36

    Google Scholar 

  7. Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR1393195 (97d:22011) 76

    Google Scholar 

  8. ________, Algebra and geometry, Cambridge University Press, Cambridge, 2005. MR2153234 (2006a:00001) 2, 76

    Google Scholar 

  9. Alan F. Beardon and Ian Short, Conformal symmetries of regions, Irish Math. Soc. Bull. 59 (2007), 49–60. MR2353408 (2008j:30013) 38

    Google Scholar 

  10. F.A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134–1167. Reprinted in [11, pp. 228–261]. MR50#2996 26, 27, 28

    Google Scholar 

  11. ________, Metod vtorichnogo kvantovaniya, Second, “Nauka”, Moscow, 1986. Edited and with a preface by M.K. Polivanov. MR89c:81001 26, 79

    Google Scholar 

  12. Albrecht B¨ottcher, Yuri I. Karlovich, and Ilya M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Operator Theory: Advances and Applications, vol. 131, Birkh¨auser Verlag, Basel, 2002. MR1898405 (2003c:47047) 25

    Google Scholar 

  13. Charles P. Boyer and Willard Miller Jr., A classification of second-order raising operators for Hamiltonians in two variables, J.Mathematical Phys. 15 (1974), 1484– 1489. MR0345542 (49 #10278) 52, 63

    Google Scholar 

  14. Ola Bratteli and Palle E.T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale 𝑁, Integral Equations Operator Theory 28 (1997), no. 4, 382–443. arXiv:funct-an/9612003. 25

    Google Scholar 

  15. Alastair Brodlie and Vladimir V. Kisil, Observables and states in 𝑝-mechanics, Advances in mathematics research. vol. 5, 2003, pp. 101–136. arXiv:quant-ph/ 0304023. MR2117375 56, 57, 58, 65

    Google Scholar 

  16. Esteban Calzetta and Enric Verdaguer, Real-time approach to tunnelling in open quantum systems: decoherence and anomalous diffusion, J. Phys. A 39 (2006), no. 30, 9503–9532. MR2246702 (2007f:82059) 57, 61

    Google Scholar 

  17. Francesco Catoni, Roberto Cannata, and Enrico Nichelatti, The parabolic analytic functions and the derivative of real functions, Adv. Appl. Clifford Algebras 14 (2004), no. 2, 185–190. 73

    Google Scholar 

  18. Jens Gerlach Christensen and Gestur ´Olafsson, Examples of coorbit spaces for dual pairs, Acta Appl. Math. 107 (2009), no. 1-3, 25–48. MR2520008 22, 24

    Google Scholar 

  19. Jan Cnops, An introduction to Dirac operators on manifolds, Progress in Mathematical Physics, vol. 24, Birkh¨auser Boston Inc., Boston, MA, 2002. MR1917 405 7

    Google Scholar 

  20. Jan Cnops and Vladimir V. Kisil, Monogenic functions and representations of nilpotent Lie groups in quantum mechanics, Math. Methods Appl. Sci. 22 (1999), no. 4, 353–373. arXiv:math/9806150. Zbl # 1005.22003. MR1671449 (2000b:81044) 25, 52

    Google Scholar 

  21. Denis Constales, Nelson Faustino, and Rolf S¨oren Kraushar, Fock spaces, Landau operators and the time-harmonic Maxwell equations, Journal of Physics A: Mathematical and Theoretical 44 (2011), no. 13, 135303. 52

    Google Scholar 

  22. H.S.M. Coxeter and S.L. Greitzer, Geometry revisited., Random House, New York, 1967 (English). Zbl # 0166.16402. 76

    Google Scholar 

  23. Martin Davis, Applied nonstandard analysis, Wiley-Interscience [John Wiley & Sons], New York, 1977. MR0505473 (58 #21590) 73

    Google Scholar 

  24. Maurice A. de Gosson, Spectral properties of a class of generalized Landau operators, Comm. Partial Differential Equations 33 (2008), no. 10-12, 2096–2104. MR2475331 (2010b:47128) 55

    Google Scholar 

  25. P.A.M. Dirac, Quantum mechanics and a preliminary investigation of the hydrogen atom, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 110 (1926), no. 755, pp. 561–579 (English). 51

    Google Scholar 

  26. M. Duflo and Calvin C. Moore, On the regular representation of a nonunimodular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209–243. MR52#14145 24, 29

    Google Scholar 

  27. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part i: General theory, Pure and Applied Mathematics, vol. VII, John Wiley & Sons, Inc., New York, 1957. 28

    Google Scholar 

  28. Arthur Erd´elyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. II, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, Reprint of the 1953 original. MR698780 (84h:33001b) 63, 68, 69

    Google Scholar 

  29. Feichtinger, Hans G. and Groechenig, K.H., Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), no. 2, 307–340. Zbl # 691.46011. 22, 24

    Google Scholar 

  30. R.P. Feynman, Qed: the strange theory of light and matter, Penguin Press Science Series, Penguin, 1990. 51

    Google Scholar 

  31. Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR92k:22017 50, 52, 54, 55, 56, 60, 63, 64

    Google Scholar 

  32. Hartmut F¨uhr, Abstract harmonic analysis of continuous wavelet transforms, Lecture Notes in Mathematics, vol. 1863, Springer-Verlag, Berlin, 2005. MR2130226 (2006m:43003) 22, 24

    Google Scholar 

  33. Jean-Pierre Gazeau, Coherent States in Quantum Physics, Wiley-VCH Verlag, 2009. 52, 55, 64

    Google Scholar 

  34. Loukas Grafakos, Classical Fourier analysis, Second, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR2445437 26, 36

    Google Scholar 

  35. N.A. Gromov, Контракции и аналитические продолжения классических групп. Единыи подход. (Russian) [Contractions and analytic extensions of classical groups. Unified approach], Akad. Nauk SSSR Ural. Otdel. Komi Nauchn. Tsentr, Syktyvkar, 1990. MR1092760 (91m:81078) 52

    Google Scholar 

  36. ________, Transitions: Contractions and analytical continuations of the Cayley–Klein groups, Int. J. Theor. Phys. 29 (1990), 607–620. 52

    Google Scholar 

  37. N.A. Gromov and V.V. Kuratov, All possible Cayley-Klein contractions of quantum orthogonal groups, Yadernaya Fiz. 68 (2005), no. 10, 1752–1762. MR2189521 (2006g:81101) 51, 52

    Google Scholar 

  38. Uwe G¨unther and Sergii Kuzhel, –symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras, Journal of Physics A: Mathematical and Theoretical 43 (2010), no. 39, 392002. 51, 52

    Google Scholar 

  39. Sigurdur Helgason, Integral geometry and Radon transforms, Springer, New York, 2011. MR2743116 26

    Google Scholar 

  40. Francisco J. Herranz, Ram´on Ortega, and Mariano Santander, Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry, J. Phys. A 33 (2000), no. 24, 4525–4551. arXiv:math-ph/9910041. MR1768742 (2001k:53099) 16, 72

    Google Scholar 

  41. Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1994. Corrected reprint of the 1991 original. MR95c: 15001 45

    Google Scholar 

  42. Roger Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 2, 821–843. MR81h:22010 2, 54, 65

    Google Scholar 

  43. ________, Quantum mechanics and partial differential equations, J. Funct. Anal. 38 (1980), no. 2, 188–254. MR83b:35166 28, 50, 52, 55, 60, 64

    Google Scholar 

  44. Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis. Applications of S𝐿(2,R), Springer-Verlag, New York, 1992. MR1151617 (93f:22009) 20, 52, 68

    Google Scholar 

  45. Robin Hudson, Generalised translation-invariant mechanics, D. Phil. thesis, Bodleian Library, Oxford, 1966. 51, 52

    Google Scholar 

  46. ________, Translation invariant phase space mechanics, Quantum theory: reconsideration of foundations – 2, 2004, pp. 301–314. MR2111131 (2006e:81134) 51, 52

    Google Scholar 

  47. Ondrej Hutn´ık, On Toeplitz-type operators related to wavelets, Integral Equations Operator Theory 63 (2009), no. 1, 29–46. MR2480637 24

    Google Scholar 

  48. Andreas Johansson, Shift-invariant signal norms for fault detection and control, Systems Control Lett. 57 (2008), no. 2, 105–111. MR2378755 (2009d:93035) 26

    Google Scholar 

  49. A.Yu. Khrennikov, Hyperbolic quantum mechanics, Dokl. Akad. Nauk 402 (2005), no. 2, 170–172. MR2162434 (2006d:81118) 51, 65, 68

    Google Scholar 

  50. Andrei Khrennikov, ‘Quantum probabilities’ as context depending probabilities (2001). arXiv:quant-ph/0106073. 58

    Google Scholar 

  51. ________, Hyperbolic Quantum Mechanics, Adv. Appl. Clifford Algebras 13 (2003), no. 1, 1–9 (English). arXiv:quant-ph/0101002. 51, 61, 68

    Google Scholar 

  52. ________, Hyperbolic quantization, Adv. Appl. Clifford Algebr. 18 (2008), no. 3-4, 843–852. MR2490591 51, 65, 66, 67, 68, 78

    Google Scholar 

  53. Andrei Khrennikov and Gavriel Segre, Hyperbolic quantization, Quantum probability and infinite dimensional analysis, 2007, pp. 282–287. MR2359402 65

    Google Scholar 

  54. A.Yu. Khrennikov and Ya.I. Volovich, Numerical experiment on interference for macroscopic particles (2001). arXiv:quant-ph/0111159. 58

    Google Scholar 

  55. A.A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin, 1976. Translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften, Band 220. MR54#447 5, 14, 16, 18, 21, 41, 43, 53, 58, 75

    Google Scholar 

  56. ________, Introduction to the theory of representations and noncommutative harmonic analysis [ MR90a:22005], Representation theory and noncommutative harmonic analysis, i, 1994, pp. 1–156, 227–234. MR1311488. MR1311 488 50, 58

    Google Scholar 

  57. ________, Merits and demerits of the orbit method, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 4, 433–488. MR2000h:22001 50, 58, 76

    Google Scholar 

  58. A.A. Kirillov, A tale on two fractals, 2010. URL: http://www.math.upenn.edu/˜kirillov/MATH480-F07/tf.pdf, in publication. 9

    Google Scholar 

  59. Anastasia V. Kisil, Isometric action of SL2(ℝ) on homogeneous spaces, Adv. App. Clifford Algebras 20 (2010), no. 2, 299–312. arXiv:0810.0368. 14

    Google Scholar 

  60. Vladimir V. Kisil, Clifford valued convolution operator algebras on the Heisenberg group. A quantum field theory model, Clifford algebras and their applications in mathematical physics, proceedings of the third international conference held in Deinze, 1993, pp. 287–294. MR1266878. 52

    Google Scholar 

  61. ________, Quantum probabilities and non-commutative Fourier transform on the Heisenberg group, Interaction between functional analysis, harmonic analysis and probability (Columbia, MO, 1994), 1995, pp. 255–266. MR97b:81060. 56

    Google Scholar 

  62. ________, M¨obius transformations and monogenic functional calculus, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), no. 1, 26–33. On-line. MR1405966 (98a:47018) 28, 40, 41, 77

    Google Scholar 

  63. ________, Plain mechanics: classical and quantum, J. Natur. Geom. 9 (1996), no. 1, 1–14. arXiv:funct-an/9405002. MR1374912 (96m:81112) 56, 77

    Google Scholar 

  64. ________, Analysis in R1,1 or the principal function theory, Complex Variables Theory Appl. 40 (1999), no. 2, 93–118. arXiv:funct-an/9712003. MR1744876 (2000k:30078) 5, 14, 22, 25, 30, 37, 38, 39, 77, 78

    Google Scholar 

  65. ________, Two approaches to non-commutative geometry, Complex methods for partial differential equations (Ankara, 1998), 1999, pp. 215–244. arXiv:funct-an/ 9703001. MR1744440 (2001a:01002) 30

    Google Scholar 

  66. ________, Wavelets in Banach spaces, Acta Appl. Math. 59 (1999), no. 1, 79–109. arXiv:math/9807141, On-line. MR1740458 (2001c:43013) 22, 23, 25, 26, 27, 28, 38, 40, 41, 59

    Google Scholar 

  67. ________, Umbral calculus and cancellative semigroup algebras, Z. Anal. Anwendungen 19 (2000), no. 2, 315–338. arXiv:funct-an/9704001. Zbl # 0959.43004. MR1768995 (2001g:05017) 23

    Google Scholar 

  68. ________, Spaces of analytical functions and wavelets – Lecture notes, 2000. 92 pp. arXiv:math.CV/0204018. 30, 38, 39

    Google Scholar 

  69. ________, Meeting Descartes and Klein somewhere in a noncommutative space, Highlights of mathematical physics (London, 2000), 2002, pp. 165–189. arXiv: math-ph/0112059. MR2001578 (2005b:43015) 4, 30

    Google Scholar 

  70. ________, Quantum and classical brackets, Internat. J. Theoret. Phys. 41 (2002), no. 1, 63–77. arXiv:math-ph/0007030. On-line. MR2003b:81105 50, 56

    Google Scholar 

  71. ________, Tokens: an algebraic construction common in combinatorics, analysis, and physics, Ukrainian mathematics congress – 2001 (Ukrainian), 2002, pp. 146–155. arXiv:math.FA/0201012. MR2228860 (2007d:05010) 23

    Google Scholar 

  72. ________, Two slits interference is compatible with particles’ trajectories, Quantum theory: Reconsideration of foundations, 2002, pp. 215–226. arXiv:quant-ph/ 0111094. 58

    Google Scholar 

  73. ________, Monogenic calculus as an intertwining operator, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 5, 739–757. arXiv:math.FA/0311285, On-line. MR2130636 (2006a:47025) 40, 41, 77

    Google Scholar 

  74. ________, 𝑝-Mechanics as a physical theory: an introduction, J. Phys. A 37 (2004), no. 1, 183–204. arXiv:quant-ph/0212101, On-line. Zbl # 1045.81032. MR2044764 (2005c:81078) 50, 55, 56, 58, 59, 60, 72, 77

    Google Scholar 

  75. ________, Spectrum as the support of functional calculus, Functional analysis and its applications, 2004, pp. 133–141. arXiv:math.FA/0208249. MR2098877 4, 28, 40, 41, 78

    Google Scholar 

  76. ________, 𝑝-mechanics and field theory, Rep. Math. Phys. 56 (2005), no. 2, 161–174. arXiv:quant-ph/0402035, On-line. MR2176789 (2006h:53104) 77, 78

    Google Scholar 

  77. ________, A quantum-classical bracket from 𝑝-mechanics, Europhys. Lett. 72 (2005), no. 6, 873–879. arXiv:quant-ph/0506122, On-line. MR2213328 (2006k:81134) 59, 77

    Google Scholar 

  78. ________, Erlangen program at large – 0: Starting with the group SL2(R) , Notices Amer. Math. Soc. 54 (2007), no. 11, 1458–1465. arXiv:math/0607387, On-line. MR2361159 77, 78

    Google Scholar 

  79. ________, Comment on “Do we have a consistent non-adiabatic quantum-classical mechanics?” by Agostini F. et al., Europhys. Lett. EPL 89 (2010), 50005. arXiv:0907.0855. 16, 59, 77

    Google Scholar 

  80. ________, Computation and dynamics: Classical and quantum, AIP Conference Proceedings 1232 (2010), no. 1, 306–312. arXiv:0909.1594. 52

    Google Scholar 

  81. ________, Erlangen program at large – 2: Inventing a wheel. The parabolic one, Trans. Inst. Math. of the NAS of Ukraine, 2010, pp. 89–98. arXiv:0707.4024. 72

    Google Scholar 

  82. ________, Erlangen program at large – 1: Geometry of invariants, SIGMA, Symmetry Integrability Geom. Methods Appl. 6 (2010), no. 076, 45. arXiv:math.CV/0512416. 4, 7, 11, 14, 37, 65, 73, 77, 78

    Google Scholar 

  83. ________, Wavelets beyond admissibility, Proceedings of the 10𝑡ℎ ISAAC Congress, London 2009, 2010, pp. 6 pp. arXiv:0911.4701. 22

    Google Scholar 

  84. ________, Covariant transform, Journal of Physics: Conference Series 284 (2011), no. 1, 012038. arXiv:1011.3947. 31, 40, 41

    Google Scholar 

  85. ________, Erlangen program at large – 2 1/2: Induced representations and hypercomplex numbers, Известия Коми научного центра УрО РАН [Izvestiya Komi nauchnogo centra UrO RAN] 5 (2011), no. 1, 4–10. arXiv:0909.4464. 5, 14, 18, 19, 55, 64, 65, 75, 78

    Google Scholar 

  86. ________, Erlangen Programme at Large 1.1: Integral transforms and differential operators, in preparation (2011). 34, 36, 37, 49

    Google Scholar 

  87. ________, Erlangen Programme at Large 3.2: Ladder operators in hypercomplex mechanics, Acta Polytechnica 51 (2011), no. 4, 44–53. arXiv:1103.1120. 16, 52

    Google Scholar 

  88. ________, Hypercomplex representations of the Heisenberg group and mechanics, Internat. J. Theoret. Phys. 51 (2012), no. 3, 964–984. arXiv:1005.5057. 16, 54, 69, 74, 77, 78

    Google Scholar 

  89. ________, Erlangen program at large: an Overview, Advances in applied analysis, 2012, pp. 1–65. arXiv:1106.1686. 78

    Google Scholar 

  90. ________, Geometry of M¨obius transformations: Elliptic, parabolic and hyperbolic actions of SL2(R), Imperial College Press, 2012. Includes a live DVD. 11, 14

    Google Scholar 

  91. ________, Operator covariant transform and local principle, J. Phys. A: Math. Theor. 45 (2012), 244022. arXiv:1201.1749. 22

    Google Scholar 

  92. John R. Klauder, Coherent states for the hydrogen atom, J. Phys. A 29 (1996), no. 12, L293–L298. MR1398598 (97f:81052) 31

    Google Scholar 

  93. John R. Klauder and Bo-Sture Skagerstam (eds.), Coherent states. Applications in physics and mathematical physics, World Scientific Publishing Co., Singapur, 1985. 22

    Google Scholar 

  94. M.G. Kre˘ın, On Hermitian operators with directed functionals, Akad. Nauk Ukrain. RSR. Zbirnik Prac Inst. Mat. 1948 (1948), no. 10, 83–106. MR14:56c, reprinted in [95]. 25

    Google Scholar 

  95. ________, Избранные Труды. II, Akad. Nauk Ukrainy Inst. Mat., Kiev, 1997. MR96m: 01030. 84

    Google Scholar 

  96. Joseph P.S. Kung (ed.), Gian-Carlo Rota on combinatorics: Introductory papers and commentaries, Contemporary Mathematicians, vol. 1, Birkh¨auser Verlag, Boston, 1995. 23

    Google Scholar 

  97. Serge Lang, SL2(R), Graduate Texts in Mathematics, vol. 105, Springer-Verlag, New York, 1985. Reprint of the 1975 edition. MR803508 (86j:22018) 2, 3, 4, 17, 19, 22, 24, 25, 27, 30, 35, 52, 63, 77

    Google Scholar 

  98. Lavrentev, M.A. and Shabat, B.V., Проблемы гидродинамики и их математические модели. (Russian) [Problems of hydrodynamics and their mathematical models], Second, Izdat. “Nauka”, Moscow, 1977. MR56#17392 16

    Google Scholar 

  99. Jean-Marc L´evy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincar ´e, Ann. Inst. H. Poincar´e Sect. A (N.S.) 3 (1965), 1–12. MR0192900 (33 #1125) 51

    Google Scholar 

  100. V.B. Lidski˘ı, On the theory of perturbations of nonselfadjoint operators, ˘Z. Vyˇcisl. Mat. i Mat. Fiz. 6 (1966), no. 1, 52–60. MR0196930 (33 #5114) 46

    Google Scholar 

  101. S.G. Low, Noninertial Symmetry Group of Hamilton’s Mechanics (March 2009), available at 0903.4397. arXiv:0903.4397. 73

    Google Scholar 

  102. Volodymyr Mazorchuk, Lectures on 𝑠𝑙2-modules, World Scientific, 2009. 20, 52, 68

    Google Scholar 

  103. Vladimir V. Mityushev and Sergei V. Rogosin, Constructive methods for linear and nonlinear boundary value problems for analytic functions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 108, Chapman & Hall/CRC, Boca Raton, FL, 2000. Theory and applications. MR1739063 (2001d:30075) 38

    Google Scholar 

  104. Julio Moro, James V. Burke, and Michael L. Overton, On the Lidskii-Vishik- Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure, SIAM J. Matrix Anal. Appl. 18 (1997), no. 4, 793–817. MR1471994 (98k:15014) 46

    Google Scholar 

  105. U. Niederer, The maximal kinematical invariance group of the free Schr¨odinger equation, Helv. Phys. Acta 45 (1972/73), no. 5, 802–810. MR0400948 (53 #4778) 54

    Google Scholar 

  106. N. K. Nikolski˘ı, Treatise on the shift operator, Springer-Verlag, Berlin, 1986. Spectral function theory, with an appendix by S. V. Hruˇsˇcev [S. V. Khrushch¨ev] and V. V. Peller, translated from the Russian by Jaak Peetre. MR87i:47042 28, 39

    Google Scholar 

  107. Peter J. Olver, Applications of Lie groups to differential equations, Second, Springer-Verlag, New York, 1993. MR94g:58260 42

    Google Scholar 

  108. ________, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995. MR96i:58005 42, 43

    Google Scholar 

  109. John R. Parker, Hyperbolic spaces, University of Durham, 2007. URL: http://maths.dur.ac.uk/˜dma0jrp/img/HSjyvaskyla.pdf. 14

    Google Scholar 

  110. Ian Percival and Derek Richards, Introduction to Dynamics., Cambridge etc.: Cambridge University Press. VIII, 228 p., 1982 (English). 73

    Google Scholar 

  111. A. Perelomov, Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986. MR87m:22035 22, 24

    Google Scholar 

  112. Valery N. Pilipchuk, Nonlinear dynamics. Between linear and impact limits., Lecture Notes in Applied and Computational Mechanics, vol. 52, Springer, Berlin, 2010 (English). 67

    Google Scholar 

  113. ________, Non-Smooth Spatio-Temporal Coordinates in Nonlinear Dynamics (January 2011), available at 1101.4597. arXiv:1101.4597. 67

    Google Scholar 

  114. R.I. Pimenov, Unified axiomatics of spaces with maximal movement group, Litov. Mat. Sb. 5 (1965), 457–486 (Russian). Zbl # 0139.37806. 52

    Google Scholar 

  115. Ian R. Porteous, Clifford algebras and the classical groups, Cambridge Studies in Advanced Mathematics, vol. 50, Cambridge University Press, Cambridge, 1995. MR1369094 (97c:15046) 52

    Google Scholar 

  116. Oleg V. Prezhdo and Vladimir V. Kisil, Mixing quantum and classical mechanics, Phys. Rev. A (3) 56 (1997), no. 1, 162–175. arXiv:quant-ph/9610016. MR1459700 (99j:81010) 56

    Google Scholar 

  117. H.M. Srivastava, Vu Kim Tuan, and S.B. Yakubovich, The Cherry transform and its relationship with a singular Sturm-Liouville problem, Q. J. Math. 51 (2000), no. 3, 371–383. MR1782100 (2001g:44010) 68

    Google Scholar 

  118. B´ela Sz.-Nagy and Ciprian Foia,s, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Company, Amsterdam, 1970. 27

    Google Scholar 

  119. Joseph L. Taylor, A general framework for a multi-operator functional calculus, Advances in Math. 9 (1972), 183–252. MR0328625 (48 #6967) 77

    Google Scholar 

  120. Michael E. Taylor, Noncommutative harmonic analysis, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR88a:22021 19, 22, 35, 52, 53

    Google Scholar 

  121. A. Torre, A note on the general solution of the paraxial wave equation: a Lie algebra view, Journal of Optics A: Pure and Applied Optics 10 (2008), no. 5, 055006 (14pp). 52, 54, 55, 68

    Google Scholar 

  122. ________, Linear and quadratic exponential modulation of the solutions of the paraxial wave equation, Journal of Optics A: Pure and Applied Optics 12 (2010), no. 3, 035701 (11pp). 52, 54

    Google Scholar 

  123. Eugene E. Tyrtyshnikov, A brief introduction to numerical analysis, Birkh¨auser Boston Inc., Boston, MA, 1997. MR1442956 (97m:65005) 46

    Google Scholar 

  124. S. Ulrych, Relativistic quantum physics with hyperbolic numbers, Phys. Lett. B 625 (2005), no. 3-4, 313–323. MR2170329 (2006e:81103a) 65

    Google Scholar 

  125. ________, Representations of Clifford algebras with hyperbolic numbers, Adv. Appl. Clifford Algebr. 18 (2008), no. 1, 93–114. MR2377525 (2009d:81139) 65

    Google Scholar 

  126. A. Vourdas, Analytic representations in quantum mechanics, J. Phys. A 39 (2006), no. 7, R65–R141. MR2210163 (2007g:81069) 50

    Google Scholar 

  127. Carl E. Wulfman, Dynamical Symmetry, World Scientific, 2010. 52, 55, 68, 73

    Google Scholar 

  128. I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Heidelberg Science Library, Springer-Verlag, New York, 1979. Translated from the Russian by Abe Shenitzer, with the editorial assistance of Basil Gordon. MR520230 (80c:51007) 2, 6, 13, 16, 65, 70

    Google Scholar 

  129. Cosmas Zachos, Deformation quantization: quantum mechanics lives and works in phase-space, Internat. J. Modern Phys. A 17 (2002), no. 3, 297–316. arXiv:hep-th/ 0110114. MR1888 937 60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Kisil .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Hans G. Feichtinger on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Kisil, V.V. (2012). Erlangen Program at Large: An Overview. In: Rogosin, S., Koroleva, A. (eds) Advances in Applied Analysis. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0417-2_1

Download citation

Publish with us

Policies and ethics