Skip to main content

Generalized Euclidean Bosonic String Equations

  • Conference paper
  • First Online:
Spectral Analysis of Quantum Hamiltonians

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 224))

Abstract

We consider nonlinear equations of the form p(Δ)u = U(x, u(x)), in which p is a real-valued function satisfying some suitable technical conditions, and Δ stands for the Laplacian operator. We formulate a functional calculus appropriate for the study of such equations, and we establish results on the existence and regularity of solutions to the Euclidean bosonic string equation Δexp(-c Δ) u = U(x, u(x)), and we introduce a functional calculus appropriate for the study of very general nonlinear equations depending on functions of the Laplace operator. We also prove that under some further technical conditions, these “nonlocal” equations admit smooth, and even realanalytic, solutions. Our motivation comes from recent developments in string theory and nonlocal cosmology.

Mathematics Subject Classification (2010). 35Sxx, 44Axx, 81T30, 83F05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Arendt, C.J.K. Batty, M. Hieber, and F. Neubrander, “Vector-valued Laplace transforms and Cauchy problems”. Birkhäuser, 2001.

    Google Scholar 

  2. N. Barnaby, A new formulation of the initial value problem for nonlocal theories. Nuclear Physics B 845 (2011), 1-29.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Barnaby, T. Biswas and J.M. Cline, p-adic inflation. J. High Energy Physics 2007, no. 04, Paper 056, 35 pp.

    Google Scholar 

  4. N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: the initial value problem. J. High Energy Physics 2008 no. 02, Paper 008, 40 pp.

    Google Scholar 

  5. N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: variable coefficient equations. J. High Energy Physics 2008 no. 12, Paper 022, 27 pp.

    Google Scholar 

  6. G. Calcagni, M. Montobbio and G. Nardelli, Route to nonlocal cosmology. Physics Review D 76 (2007), 126001 (20 pages).

    Google Scholar 

  7. G. Calcagni, M. Montobbio and G. Nardelli, Localization of nonlocal theories. Physics Letters B 662 (2008), 285-289.

    Article  MathSciNet  Google Scholar 

  8. Yu.A. Dubinskii, The algebra of pseudodifferential operators with analytic symbols and its applications to mathematical physics. Russian Math. Surveys 37 (1982), 109153.

    Article  Google Scholar 

  9. D.A. Eliezer and R.P. Woodard, The problem of nonlocality in string theory. Nuclear- Physics B 325 (1989), 389-469.

    Article  MathSciNet  Google Scholar 

  10. C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Functional Analysis 87 (1989), 357-369.

    Article  MathSciNet  Google Scholar 

  11. Z. Grujic and H. Kalisch, Gevrey regularity for a class of water-wave models. Nonlinear Analysis 71 (2009), 1160-1170.

    Article  MathSciNet  MATH  Google Scholar 

  12. A.A. Gerasimov, S.L. Shatashvili, On exact tachyon potential in open string field theory. J. High Energy Physics 2000, no. 10, Paper 34, 12 pp.

    Google Scholar 

  13. M.L. Gorbachuk and Yu.G. Mokrousov, Conditions for subspaces of analytic vectors of a closed operator in a Banach space to be dense. Funct. Anal. Appl. 35 (2001), 64-66.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Goodman, Analytic and entire vectors for representations of Lie groups. Trans. Amer. Math. Soc., 143, No. 3, (1969), 55-76.

    Google Scholar 

  15. P. Górka, H. Prado and E.G. Reyes, Nonlinear equations with infinitely many derivatives. Complex Analysis and Operator Theory, 5 (2011), 313-323.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Górka, H. Prado and E.G. Reyes, Functional calculus via Laplace transform and equations with infinitely many derivatives. Journal of Mathematical Physics 51 (2010), 103512.

    Article  MathSciNet  Google Scholar 

  17. P. Górka, H. Prado and E.G. Reyes, On a general class of nonlocal equations. Submitted, Annales Henri Poincaré, April 2011.

    Google Scholar 

  18. E. Hebey, Sobolev spaces on Riemannian manifolds. Lecture Notes in Mathematics, 1635. Springer-Verlag, Berlin, 1996. x+116 pp.

    Google Scholar 

  19. E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, AMS, 2000.

    MATH  Google Scholar 

  20. E. Hebey and M. Vaugon, Sobolev spaces in the presence of symmetries. J. Math. Pures Appi. 76 (1997), 859-881.

    Article  MathSciNet  Google Scholar 

  21. L. Hörmander, The analysis of linear partial differential operators III. SpringerVerlag, Berlin, 1985.

    MATH  Google Scholar 

  22. N. Jacob, A class of Feller semigroups generated by pseudodifferential operators. Math. Z. 215 (1994), 151-166.

    Article  MathSciNet  MATH  Google Scholar 

  23. V.A. Kostelecký and S. Samuel, On a nonperturbative vacuum for the open bosonic string. Nucl. Phys. B 336 (1990), 263-296.

    Article  Google Scholar 

  24. P.-L. Lions, Symmetry and compactness in Sobolev spaces, J. Funct. Anal. 49 (1982), 315-334.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Moeller and B. Zwiebach, Dynamics with infinitely many time derivatives and rolling tachyons. J. High Energy Physics 2002, no. 10, Paper 34, 38 pp.

    Google Scholar 

  26. E. Nelson, Analytic vectors. Annals Math. 70 (1959), 572-615.

    MATH  Google Scholar 

  27. L. Rastelli, Open string fields and D-branes. Fortschr. Phys. 52 (2004), 302-337.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Reed and B. Simon, “Methods of Mathematical Physics. Volume II” Academic Press, 1975.

    Google Scholar 

  29. S. Rosenberg, “The Laplacian on a Riemannian Manifold”. Cambridge University Press, 1997.

    Google Scholar 

  30. E.M. Stein and G. Weiss, “Introduction to Fourier analysis on Euclidean spaces”. Princeton Mathematical Series, PUP, Princeton, 1971.

    MATH  Google Scholar 

  31. M.E. Taylor, “Partial Differential Equations I. Basic Theory”. Springer-Verlag, New York, (1996).

    Google Scholar 

  32. W. Taylor, String Field Theory. In: “Approaches to Quantum Gravity”, Daniele Oriti (Ed.), 210-228, Cambridge University Press, 2009.

    Google Scholar 

  33. F. Treves, On the theory of linear partial differential operators with analytic coefficients. Transactions AMS 137 (1969), 1-20.

    MathSciNet  MATH  Google Scholar 

  34. E. Witten, Noncommutative geometry and string field theory. Nuclear Physics B 268 (1986), 253-294.

    Article  MathSciNet  Google Scholar 

  35. M.W. Wong, On some spectral properties of elliptic pseudodifferential operators. Proc. AMS 99 (1987), 683-689.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Górka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this paper

Cite this paper

Górka, P., Prado, H., Reyes, E.G. (2012). Generalized Euclidean Bosonic String Equations. In: Benguria, R., Friedman, E., Mantoiu, M. (eds) Spectral Analysis of Quantum Hamiltonians. Operator Theory: Advances and Applications, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0414-1_8

Download citation

Publish with us

Policies and ethics