Skip to main content

LMI Representations of Convex Semialgebraic Sets and Determinantal Representations of Algebraic Hypersurfaces: Past, Present, and Future

  • Chapter
  • First Online:

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 222))

Abstract

10 years ago or so Bill Helton introduced me to some mathematical problems arising from semidefinite programming. This paper is a partial account of what was and what is happening with one of these problems, including many open questions and some new results.

Mathematics Subject Classification. Primary: 14M12, 90C22; secondary: 14P10, 52A20.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris. Geometry of Algebraic Curves: Volume I. Springer, New York, 1985.

    Google Scholar 

  2. J. Backelin, J. Herzog, and H. Sanders. Matrix factorizations of homogeneous polynomials. Algebra some current trends (Varna, 1986), pp. 1–33. Lecture Notes in Math., 1352, Springer, Berlin, 1988.

    Google Scholar 

  3. J.A. Ball and V. Vinnikov. Zero-pole interpolation for matrix meromorphic functions on an algebraic curve and transfer functions of 2D systems. Acta Appl. Math. 45:239–316, 1996.

    Article  MathSciNet  Google Scholar 

  4. J.A. Ball and V. Vinnikov. Zero-pole interpolation for meromorphic matrix functions on a compact Riemann surface and a matrix Fay trisecant identity. Amer. J. Math. 121:841–888, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Beauville. Determinantal hypersurfaces. Mich. Math. J. 48:39–64, 2000.

    MathSciNet  MATH  Google Scholar 

  6. P. Brändén. Obstructions to determinantal representability. Advances in Math., to appear (arXiv:1004.1382).

    Google Scholar 

  7. H.H. Bauschke, O. Güler, A.S. Lewis, and H.S. Sendov. Hyperbolic polynomials and convex analysis. Canad. J. Math. 53:470–488, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Buckley and T. Košir. Determinantal representations of smooth cubic surfaces. Geom. Dedicata 125:115–140, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.J. Cook and A.D. Thomas. Line bundles and homogeneous matrices. Quart. J. Math. Oxford Ser. (2) 30:423–429, 1979.

    Google Scholar 

  10. A. Degtyarev and I. Itenberg. On real determinantal quartics. Preprint (arXiv:1007.3028).

    Google Scholar 

  11. L.E. Dickson. Determination of all general homogeneous polynomials expressible as determinants with linear elements. Trans. Amer. Math. Soc. 22:167–179, 1921.

    Article  MathSciNet  Google Scholar 

  12. A. Dixon. Note on the reduction of a ternary quartic to a symmetrical determinant. Proc. Cambridge Phil. Soc. 11:350-351, 1900–1902 (available at http://www.math.bgu.ac.il/kernerdm ).

  13. I. Dolgachev. Classical Algebraic Geometry: A Modern View. Cambridge Univ. Press, to appear (available at http://www.math.lsa.umich.edu).

  14. B.A. Dubrovin. Matrix finite zone operators. Contemporary Problems of Mathematics (Itogi Nauki i Techniki) 23, pp. 33–78 (1983) (Russian).

    Google Scholar 

  15. J.D. Fay. Theta Functions On Riemann Surfaces. Lecture Notes in Math. 352, Springer, Berlin, 1973.

    Google Scholar 

  16. D. Eisenbud. Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc. 260:35-64, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Gårding. Linear hyperbolic partial differential equations with constant coefficients. Acta Math. 85:2–62, 1951.

    Article  Google Scholar 

  18. L. Gårding. An inequality for hyperbolic polynomials. J. Math. Mech. 8:957–965, 1959.

    MathSciNet  MATH  Google Scholar 

  19. B. Grenet, E. Kaltofen, P. Koiran, and N. Portier. Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits. Randomization, Relaxation, and Complexity in Polynomial Equation Solving (edited by L. Gurvits, P. Pebay, and J.M. Rojas), pp. 61–96. Contemporary Mathematics 556, Amer. Math. Soc., 2011 (arXiv:1007.3804).

    Google Scholar 

  20. P. Griffiths and J. Harris. On the Noether–Lefschetz theorem and some remarks on codimension two cycles. Math. Ann. 271:31–51, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  21. O. Güler. Hyperbolic polynomials and interior point methods for convex programming. Mathematics of Operations Research 22:350–377, 1997.

    Article  MathSciNet  Google Scholar 

  22. R. Hartshorne. Ample subvarieties of algebraic varieties. Lecture Notes in Math., 156, Springer-Verlag, Heidelberg, 1970.

    Google Scholar 

  23. J.W. Helton and S.A. McCullough. Every convex free basic semi-algebraic set has an LMI representation. Preprint [http://arxiv.org/abs/0908.4352]

  24. J.W. Helton, S. McCullough, M. Putinar, and V. Vinnikov. Convex matrix inequalities versus linear matrix inequalities. IEEE Trans. Automat. Control 54:952–964, 2009.

    Article  MathSciNet  Google Scholar 

  25. J.W. Helton and J. Nie. Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20:759–791, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.W. Helton and J. Nie. Semidefinite representation of convex sets. Math. Program. 122:21–64, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.W. Helton, S.A. McCullough, and V. Vinnikov. Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240:105–191, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.W. Helton and V. Vinnikov. Linear Matrix Inequality Representation of Sets. Comm. Pure Appl. Math. 60:654–674, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Henrion. Detecting rigid convexity of bivariate polynomials. Linear Algebra Appl. 432:1218–1233, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Herzog, B. Ulrich, and J. Backelin. Linear Cohen-Macaulay modules over strict complete intersections. J. Pure Appl. Algebra 71:187–202, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  31. S.-G. Hwang. Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Amer. Math. Monthly 111:157–159, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Kerner and V. Vinnikov. On the determinantal representations of singular hypersurfaces in Pn. Advances in Math., to appear (arXiv:0906.3012).

    Google Scholar 

  33. D. Kerner and V. Vinnikov. On decomposability of local determinantal representations of hypersurfaces. Preprint (arXiv:1009.2517).

    Google Scholar 

  34. M.G. Krein and M.A. Naimark. The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations. Kharkov, 1936. English translation (by O. Boshko and J.L. Howland): Lin. Mult. Alg. 10:265–308, 1981.

    Google Scholar 

  35. J.B. Lasserre. Convex sets with semidefinite representation. Math. Program. 120:457477, 2009.

    Article  MathSciNet  Google Scholar 

  36. P. Lax. Differential equations, difference equations and matrix theory. Comm. Pure Appl. Math. 11:175–194, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Lefschetz. L’analysis situs et la géometrie algébrique. Gauthier-Villars, Paris, 1924.

    Google Scholar 

  38. A.S. Lewis, P.A. Parrilo, and M.V. Ramana. The Lax conjecture is true. Proc. Amer. Math. Soc. 133:2495–2499, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Nemirovskii. Advances in convex optimization: conic programming. Proceedings of the International Congress of Mathematicians (ICM) (Madrid, 2006), Vol. I (Plenary Lectures), pp. 413–444. Eur. Math. Soc., Zurich, 2007 (available at http://www.icm2006.org/proceedings).

  40. Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics, 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

    Google Scholar 

  41. T. Netzer, D. Plaumann, and M. Schweighofer. Exposed faces of semidefinitely representable sets. SIAM J. Optim. 20:1944–1955, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Netzer, D. Plaumann, and A. Thom. Determinantal representations and the Hermite matrix. Preprint (arXiv:1108.4380).

    Google Scholar 

  43. T. Netzer, A. Thom: Polynomials with and without determinantal representations. Preprint (arXiv:1008.1931).

    Google Scholar 

  44. W. Nuij. A note on hyperbolic polynomials. Math. Scand. 23:69–72, 1968.

    MathSciNet  MATH  Google Scholar 

  45. P. Parrilo and B. Sturmfels. Minimizing polynomial functions. Algorithmic and quantitative real algebraic geometry (Piscataway, NJ, 2001), pp. 83–99. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 60, Amer. Math. Soc., Providence, RI, 2003.

    Google Scholar 

  46. D. Plaumann, B. Sturmfels, and C. Vinzant. Quartic Curves and Their Bitangents. Preprint (arXiv:1008.4104).

    Google Scholar 

  47. D. Plaumann, B. Sturmfels, and C. Vinzant. Computing Linear Matrix Representations of Helton-Vinnikov Curves. This volume (arXiv:1011.6057).

    Google Scholar 

  48. R. Quarez. Symmetric determinantal representations of polynomials. Preprint (http://hal.archives-ouvertes.fr/hal-00275615_vl).

  49. M. Ramana and A.J. Goldman. Some geometric results in semidefinite programming. J. Global Optim. 7:33–50, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Renegar. Hyperbolic programs, and their derivative relaxations. Found. Comput. Math. 6:59–79, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  51. R.E. Skelton, T. Iwasaki, and K.M. Grigoriadis. A Unified Algebraic Approach to Linear Control Design. Taylor & Francis, 1997.

    Google Scholar 

  52. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev. 38:49–95, 1996.

    MathSciNet  MATH  Google Scholar 

  53. V. Vinnikov. Complete description of determinantal representations of smooth irreducible curves. Lin. Alg. Appl. 125:103–140, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Vinnikov. Self-adjoint determinantal representions of real plane curves. Math. Ann. 296:453–479, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Vinnikov .

Editor information

Editors and Affiliations

Additional information

To Bill Helton, on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Vinnikov, V. (2012). LMI Representations of Convex Semialgebraic Sets and Determinantal Representations of Algebraic Hypersurfaces: Past, Present, and Future. In: Dym, H., de Oliveira, M., Putinar, M. (eds) Mathematical Methods in Systems, Optimization, and Control. Operator Theory: Advances and Applications, vol 222. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0411-0_23

Download citation

Publish with us

Policies and ethics