Skip to main content

Tamari Lattices and the Symmetric Thompson Monoid

  • Chapter
  • First Online:
Associahedra, Tamari Lattices and Related Structures

Part of the book series: Progress in Mathematics ((PM,volume 299))

  • 1186 Accesses

Abstract

We investigate the connection between Tamari lattices and the Thompson group F, summarized in the fact that F is a group of fractions for a certain monoid \( {F^+_{\rm sym}} \)whose Cayley graph includes all Tamari lattices. Under this correspondence, the Tamari lattice meet and join are the counterparts of the least common multiple and greatest common divisor operations in \( {F^+_{\rm sym}} \). As an application, we show that, for every n, there exists a length l chain in the nth Tamari lattice whose endpoints are at distance at most 12l/n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Baril and J.M.. Pallo, “Efficient lower and upper bounds of the diagonal-flip distance between triangulations”, Inform. Proc. Letters 100 (2006) 131–136.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Björner and M. Wachs, “Shellable nonpure complexes and posets. II”, Trans. Amer. Math. Soc. 349 (1997) 3945–3975.

    Article  MathSciNet  Google Scholar 

  3. M. Brin and C. Squier, “Groups of piecewise linear homeomorphisms of the real line”, Invent. Math. 79 (1985) 485–498.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.W. Cannon and W.J. Floyd, “What is Thompson’s group?”, Notices of the AMS 58-8 (2011) 1112–1113.

    MathSciNet  Google Scholar 

  5. J.W. Cannon, W.J. Floyd, and W.R. Parry, “Introductory notes on Richard Thompson’s groups”, Enseign. Math. 42 (1996) 215–257.

    MathSciNet  MATH  Google Scholar 

  6. A. Clifford and G. Preston, The algebraic theory of semigroups, volume 1, Amer. Math. Soc. Surveys, vol. 7, Amer. Math. Soc., 1961.

    Google Scholar 

  7. P. Dehornoy, “The structure group for the associativity identity”, J. Pure Appl. Algebra 111 (1996) 59–82.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Dehornoy, “Groups with a complemented presentation”, J. Pure Appl. Algebra 116 (1997) 115–137.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Dehornoy, Braids and Self-Distributivity, Progress in Math., vol. 192, Birkhäuser, 2000.

    Google Scholar 

  10. P. Dehornoy, “Study of an identity”, Algebra Universalis 48 (2002) 223–248.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Dehornoy, “Complete positive group presentations”, J. of Algebra 268 (2003) 156–197.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Dehornoy, “Geometric presentations of Thompson’s groups”, J. Pure Appl. Algebra 203 (2005) 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Dehornoy, “On the rotation distance between binary trees”, Advances in Math. 223 (2010) 1316–1355.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Dehornoy, “The word reversing method”, Intern. J. Alg. and Comput. 21 (2011) 71–118.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, and J. Michel, “Garside Theory”, Book in progress, http://www.math.unicaen.fr/~garside/Garside.pdf .

  16. O. Deiser, “Notes on the Polish Algorithm”, http://page.mi.fu-berlin.de/deiser/wwwpublic/ psfiles/polish.ps.

  17. H. Friedman and D. Tamari, “Problèmes d’associativité: Une structure de treillis finis induite par une loi demi-associative”, J. Combinat. Th. 2 (1967) 215–242.

    Article  MathSciNet  Google Scholar 

  18. V.S. Guba, “The Dehn function of Richard Thompson’s group F is quadratic”, Invent. Math. 163 (2006) 313–342.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Huang and D. Tamari, “Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law”, J. Combinat. Th. Series A 13 (1972) 7–13.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Krammer, “A class of Garside groupoid structures on the pure braid group”, Trans. Amer. Math. Soc. 360 (2008) 4029–4061.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Mac Lane, Natural associativity and commutativity, Rice University Studies, vol. 49, 1963.

    Google Scholar 

  22. R. McKenzie and R.J. Thompson, “An elementary construction of unsolvable word problems in group theory”, in Word Problems, Boone and al, eds., Studies in Logic, vol. 71, North-Holland, 1973,457–478.

    Google Scholar 

  23. J.M. Pallo, “Enumerating, ranking and unranking binary trees”, The Computer Journal 29 (1986) 171–175.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.M. Pallo, “An algorithm to compute the Möbius function of the rotation lattice of binary trees”, RAIRO Inform. Théor. Applic. 27 (1993) 341–348.

    MathSciNet  MATH  Google Scholar 

  25. D. Sleator, R. Tarjan, and W. Thurston, “Rotation distance, triangulations, and hyperbolic geometry”, J. Amer. Math. Soc. 1 (1988) 647–681.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advances Math., no. 62, Cambridge Univ. Press, 2001.

    Google Scholar 

  27. J.D. Stasheff, “Homotopy associativity of H-spaces”, Trans. Amer. Math. Soc. 108 (1963) 275–292.

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. šunić, “Tamari lattices, forests and Thompson monoids”, Europ. J. Combinat. 28 (2007) 1216–1238.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Tamari, “The algebra of bracketings and their enumeration”, Nieuw Archiefvoor Wiskunde 10 (1962) 131–146.

    MathSciNet  MATH  Google Scholar 

  30. R.J. Thompson, “Embeddings into finitely generated simple groups which preserve the word problem”, in Word Problems II, Adian, Boone, and Higman, eds., Studies in Logic, North- Holland, 1980,401–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Dehornoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Dehornoy, P. (2012). Tamari Lattices and the Symmetric Thompson Monoid. In: Müller-Hoissen, F., Pallo, J., Stasheff, J. (eds) Associahedra, Tamari Lattices and Related Structures. Progress in Mathematics, vol 299. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0405-9_11

Download citation

Publish with us

Policies and ethics