Skip to main content

Introduction to Gene Therapy

  • Chapter
  • First Online:
  • 1860 Accesses

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

Gene therapy as we understand it nowadays was conceived during the early and mid part of the twentieth century. At first, it was considered a revolutionary biomedical procedure, which could potentially cure any disease for which the molecular bases were understood. Since then, gene therapy has gone through many stages and has evolved from a nearly unrealistic perspective to a real life application. After several decades of research, a wide range of gene delivery vectors have been engineered and successfully tested in many animal models of human disease. However, clinical efficacy in humans could not be shown until the beginning of this century after its successful application in small-scale clinical trials to cure severe immunodeficiency in children. In these particular clinical trials, a retrovirus vector based on mouse leukemia virus was used, and their successes were overshadowed some time later by the occurrence of vector-related leukemia in a number of treated children. These fatal secondary effects clearly showed that the safe application of gene therapy critically depends on our understanding of vector engineering. In this context, lentiviral vectors have appeared, with improved efficiency and, apparently, increased biosafety. Very recently, the first clinical trials with lentivectors have been carried out with some success. In this chapter, we briefly define gene therapy, and describe the main scientific steps, which culminated in the engineering viral vectors in gene therapy, and place them in the context of current human therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Weiling F (1991) Historical study: Johann Gregor Mendel 1822–1884. Am J Med Genet 40(1):1–25 (discussion 26)

    Article  PubMed  CAS  Google Scholar 

  2. Falk R (1984) The gene in search of an identity. Hum Genet 68(3):195–204

    Article  PubMed  CAS  Google Scholar 

  3. Keeler CE (1947) Gene therapy. J Hered 38(10):294–298

    PubMed  CAS  Google Scholar 

  4. Editorial (1976) Gene cloning: one milestone on a very long road. Lancet 1(7965):893

    Google Scholar 

  5. Avery OT, MacLeod CM, McCarty M (1979) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 149(2):297–326

    Article  PubMed  CAS  Google Scholar 

  6. Watson JD, Crick FH (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171(4361):964–967

    Article  PubMed  CAS  Google Scholar 

  7. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  PubMed  CAS  Google Scholar 

  8. Grunberg-Manago M, Oritz PJ, Ochoa S (1955) Enzymatic synthesis of nucleic acidlike polynucleotides. Science 122(3176):907–910

    Article  PubMed  CAS  Google Scholar 

  9. Ochoa S (1963) Synthetic polynucleotides and the Genetic Code. Proceedings 5:37–64

    CAS  Google Scholar 

  10. Editorial (1981) Gene therapy: how ripe the time? Lancet 1(8213):196–197

    Google Scholar 

  11. Cline MJ (1985) Perspectives for gene therapy: inserting new genetic information into mammalian cells by physical techniques and viral vectors. Pharmacol Ther 29(1):69–92

    Article  PubMed  CAS  Google Scholar 

  12. Mulligan RC, Howard BH, Berg P (1979) Synthesis of rabbit beta-globin in cultured monkey kidney cells following infection with a SV40 beta-globin recombinant genome. Nature 277(5692):108–114

    Article  PubMed  CAS  Google Scholar 

  13. Hamer DH, Smith KD, Boyer SH, Leder P (1979) SV40 recombinants carrying rabbit beta-globin gene coding sequences. Cell 17(3):725–735

    Article  PubMed  CAS  Google Scholar 

  14. Mantei N, Boll W, Weissmann C (1979) Rabbit beta-globin mRNA production in mouse L cells transformed with cloned rabbit beta-globin chromosomal DNA. Nature 281(5726):40–46

    Article  PubMed  CAS  Google Scholar 

  15. Nagata S, Taira H, Hall A, Johnsrud L, Streuli M, Ecsodi J, Boll W, Cantell K, Weissmann C (1980) Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 284(5754):316–320

    Article  PubMed  CAS  Google Scholar 

  16. Friedmann T (1976) The future for gene therapy–a reevaluation. Ann N Y Acad Sci 265:141–152

    Article  PubMed  CAS  Google Scholar 

  17. Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175(25):949–955

    Article  PubMed  CAS  Google Scholar 

  18. Terheggen HG, Lowenthal A, Lavinha F, Colombo JP, Rogers S (1975) Unsuccessful trial of gene replacement in arginase deficiency. Zeitschrift fur Kinderheilkunde 119(1):1–3

    Article  PubMed  CAS  Google Scholar 

  19. Neville R (1976) Gene therapy and the ethics of genetic therapeutics. Ann N Y Acad Sci 265:153–169

    Article  PubMed  CAS  Google Scholar 

  20. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33(1):153–159

    Article  PubMed  CAS  Google Scholar 

  21. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90(18):8392–8396

    Article  PubMed  CAS  Google Scholar 

  22. Williamson B (1982) Gene therapy. Nature 298(5873):416–418

    Article  PubMed  CAS  Google Scholar 

  23. Mercola KE, Cline MJ (1980) Sounding boards. The potentials of inserting new genetic information. N Engl j med 303(22):1297–1300

    Article  PubMed  CAS  Google Scholar 

  24. Brenner MK, Rill DR, Holladay MS, Heslop HE, Moen RC, Buschle M, Krance RA, Santana VM, Anderson WF, Ihle JN (1993) Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342(8880):1134–1137

    Article  PubMed  CAS  Google Scholar 

  25. Deisseroth AB, Zu Z, Claxton D, Hanania EG, Fu S, Ellerson D, Goldberg L, Thomas M, Janicek K, Anderson WF et al (1994) Genetic marking shows that Ph + cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83(10):3068–3076

    PubMed  CAS  Google Scholar 

  26. Dunbar CE, Cottler-Fox M, O’Shaughnessy JA, Doren S, Carter C, Berenson R, Brown S, Moen RC, Greenblatt J, Stewart FM et al (1995) Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85(11):3048–3057

    PubMed  CAS  Google Scholar 

  27. Rill DR, Santana VM, Roberts WM, Nilson T, Bowman LC, Krance RA, Heslop HE, Moen RC, Ihle JN, Brenner MK (1994) Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84(2):380–383

    PubMed  CAS  Google Scholar 

  28. Anderson WF, Blaese RM, Culver K (1990) The ADA human gene therapy clinical protocol: points to consider response with clinical protocol, July 6, 1990. Hum Gene Ther 1(3):331–362

    Article  PubMed  Google Scholar 

  29. Blaese RM, Culver KW, Chang L, Anderson WF, Mullen C, Nienhuis A, Carter C, Dunbar C, Leitman S, Berger M et al (1993) Treatment of severe combined immunodeficiency disease (SCID) due to adenosine deaminase deficiency with CD34 + selected autologous peripheral blood cells transduced with a human ADA gene. Amendment to clinical research project, Project 90-C-195, January 10, 1992. Hum Gene Ther 4(4):521–527

    Article  PubMed  CAS  Google Scholar 

  30. Levine F, Friedmann T (1991) Gene therapy techniques. Curr Opin Biotechnol 2(6):840–844

    Article  PubMed  CAS  Google Scholar 

  31. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672

    Article  PubMed  CAS  Google Scholar 

  32. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, Von Kalle C, Barington T, Jakobsen MA, Christensen HO, Al Ghonaium A, White HN, Smith JL, Levinsky RJ, Ali RR, Kinnon C, Thrasher AJ (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364(9452):2181–2187

    Google Scholar 

  33. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118(9):3143–3150

    Google Scholar 

  34. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, De Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419

    Article  PubMed  CAS  Google Scholar 

  35. Stocking C, Loliger C, Kawai M, Suciu S, Gough N, Ostertag W (1988) Identification of genes involved in growth autonomy of hematopoietic cells by analysis of factor-independent mutants. Cell 53(6):869–879

    Article  PubMed  CAS  Google Scholar 

  36. Moreno-Carranza B, Gentsch M, Stein S, Schambach A, Santilli G, Rudolf E, Ryser MF, Haria S, Thrasher AJ, Baum C, Brenner S, Grez M (2009) Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells. Gene Ther 16(1):111–118

    Article  PubMed  CAS  Google Scholar 

  37. Ryser MF, Roesler J, Gentsch M, Brenner S (2007) Gene therapy for chronic granulomatous disease. Expert Opin Biol Ther 7(12):1799–1809

    Article  PubMed  CAS  Google Scholar 

  38. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  PubMed  CAS  Google Scholar 

  39. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G, Tebas P, June CH, Bushman FD (2009) Analysis of lentiviral vector integration in HIV + study subjects receiving autologous infusions of gene modified CD4 + T cells. Mol Ther 17(5):844–850

    Article  PubMed  CAS  Google Scholar 

  40. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chretien L, Bernaudin F, Girot R, Dorazio R, Mulder G.J, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chretien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P (2010) Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia; 1476-4687 (Electronic) 0028-0836 (Linking), Sept 16 2010, pp 318–322

    Google Scholar 

  41. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326(5954):818–823

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

David Escors is funded by an Arthritis Research UK Career Development Fellowship (18433). Karine Breckpot is funded by the Fund for Scientific Research-Flandes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Escors .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Escors, D., Breckpot, K. (2012). Introduction to Gene Therapy. In: Lentiviral Vectors and Gene Therapy. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Basel. https://doi.org/10.1007/978-3-0348-0402-8_1

Download citation

Publish with us

Policies and ethics