Upper envelopes of inner premeasures

  • Heinz KönigEmail author


In the recent book [18] on measure and integration (cited as MI) and in subsequent papers [19] - [24] the present author attempted to restructure the domain of their basic extension and representation procedures, and to develop the implications on various issues in measure and integration and beyond. There were essential connections with the work [7] [8] of Gustave Choquet. Thus MI Section 10 obtained an extended version of his capacitability theorem. The representation theories in MI chapter V and [22] [24] were based on the Choquet integral introduced in [7] Section 48, in form of the so-called horizontal integral of MI Section 11, while [24] Section 1 obtained a comprehensive version of his fundamental theorem [7] 54.1. The present paper wants to resume another theme initiated in [7] Section 53.7, that is the representation of certain non-additive set functions and functionals as upper envelopes of appropriate measures.


Submodular isotone set functions Inner premeasures Supportive properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Adamski, Capacitylike set functions and upper envelopes of measures, Math. Ann., 229 (1977), 237-244.Google Scholar
  2. 2.
    W. Adamski, On regular extensions of contents and measures, J. Math. Analysis AppL, 127 (1987), 211-225.Google Scholar
  3. 3.
    B. Anger, Approximation of capacities by measures, in: Lecture Notes Math., 226, pp. 152-170, Springer, 1971.Google Scholar
  4. 4.
    B. Anger, Kapazitäten und obere Einhüillende von Maβen. Math. Ann., 199 (1972), 115-130.Google Scholar
  5. 5.
    B. Anger, Representation of capacities. Math. Ann., 229 (1977), 245-258.Google Scholar
  6. 6.
    B. Anger and J. Lembcke, Hahn-Banach type theorems for hypolinear functionals, Math. Ann., 209 (1974), 127-152.Google Scholar
  7. 7.
    G. Croquet, Theory of capacities, Annales Inst. Fourier, Grenoble, 5 (1953-54), 131-295.Google Scholar
  8. 8.
    G. Croquet, Forme abstraite du théorème de capacitabilité, Annales Inst. Fourier, Grenoble, 9 (1959), 83-89.Google Scholar
  9. 9.
    C. Dellacrerie, Quelques commentaires sur les prolongements de capacités, in: Lecture Notes Math., 191, 77-81, Springer, 1971.Google Scholar
  10. 10.
    C. Dellacrerie, Ensembles Analytiques, Capacités, Mesures de Hausdorff, Lecture Notes Math., 295, Springer, 1972.Google Scholar
  11. 11.
    B. Fuchssteiner and H.könig, New versions of the Hahn-Banach theorem, in: Intern. Ser.Num. Math., 47, 255-266, Birkhäuser 1980.Google Scholar
  12. 12.
    B. Fuglede, Capacity as a sublinear functional generalizing an integral, Danske Vid. Selsk. Mat. -Fys. Medd., 38 (1971), 1-44.Google Scholar
  13. 13.
    P.R. Halmos, Measure Theory. Van Nostrand 1950.Google Scholar
  14. 14.
    A. Horn and A. Tarski, Measures on Boolean algebras, Trans. Amer. Math. Soc., 64 (1948), 467-497.Google Scholar
  15. 15.
    P.J. Huber and V. Strassen, Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Statist., 1 (1973), 251-263.Google Scholar
  16. 16.
    J. Kindler, A Mazur-Orlicz type theorem for submodular set functions, J. Math. Analysis AppL, 120 (1986), 533-546.Google Scholar
  17. 17.
    H. König, On the abstract Hahn-Banach theorem due to Rodé., Aequat. Math., 34 (1987), 89-95.Google Scholar
  18. 18.
    H. König, Measure and Integration: An Advanced Course in Basic Procedures and Applications, Springer, 1997.Google Scholar
  19. 19.
    H. König, Image measures and the so-called image measure catastrophe, Positivity, 1 (1997), 255-270.Google Scholar
  20. 20.
    H. König, What are signed contents and measures ? Math. Nachr., 204 (1999), 101-124.Google Scholar
  21. 21.
    H. KONIG, The product theory for inner premeasures, Note di Mat., to appear.Google Scholar
  22. 22.
    H. König, Measure and integration: Comparison of old and new procedures, Arch. Math., 72 (1999), 192-205.Google Scholar
  23. 23.
    H. König, Measure and integration: Mutual generation of outer and inner premeasures, Annales Univ. Saraviensis, Ser. Math., 9 (1998), 99-122.Google Scholar
  24. 24.
    H. König, Measure and integration: Integral representations of isotone functionals, Annales Univ. Saraviensis, Ser. Math., 9 (1998), 123-153.Google Scholar
  25. 25.
    G. RodÈ, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math., 31 (1978), 474-481.Google Scholar
  26. 26.
    V. Strassen, Meβfehler und Information, Z. Wahrsch. Verw. Geb., 2 (1964), 273-305.Google Scholar
  27. 27.
    F. Topsöe, Topology and Measure, Lecture Notes Math., 133, Springer, 1970.Google Scholar
  28. 28.
    F. Topsöe, On construction of measures, in: Topology and Measure I (Zinnowitz 1974) Part 2, 343-381, Univ. Greifswald 1978.Google Scholar
  29. 29.
    F. Topsöe, Radon measures, some basic constructions, in: Lecture Notes Math., 1033, 303-311, Springer, 1983.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.MathematikUniversität des SaarlandesSaarbrücken (Allemagne)Germany

Personalised recommendations