Advertisement

Measure and Integration: Comparison of old and new procedures

  • Heinz König
Chapter
  • 1.1k Downloads

Abstract

The article first summarizes the new development in measure and integration as presented in the recent monograph of the author 1997, with certain complements in an expository style. On this basis it then evaluates those traditional theories, named after Daniell-Stone and Bourbaki, which start from so-called elementary integrals.

Keywords

Radon Measure Hausdorff Space Traditional Theory Extension Procedure Riesz Representation Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Adamski, [1982] Tight set functions and essential measure. LNM 945, 1 – 14. Berlin-Heidelberg-New York.Google Scholar
  2. 2.
    B. Anger and C. Portenier, [1992] Radon Integrals. Progr. Math. 103.CrossRefGoogle Scholar
  3. 3.
    R. C. Bassanezi and G. H. Greco, [1984] Sull’additività dell’integrale. Rend. Sem. Mat. Univ. Padova 72, 249 – 275.Google Scholar
  4. 4.
    N. Bourbaki, [1965] Intègration. Chap. 1 – 4, 2ième Ed., Paris.Google Scholar
  5. 5.
    N. Bourbaki, [1967] Intègration. Chap. 5, 2ième Ed., Paris.Google Scholar
  6. 6.
    N. Bourbaki, [1969] Intègration. Chap. IX., Paris.Google Scholar
  7. 7.
    K. Floret, [1981] Maβ- und Integrationstheorie. Stuttgart.Google Scholar
  8. 8.
    G. H. Greco, [1982] Sulla rappresentazione di funzionali mediante integrali. Rend. Sem. Mat. Univ. Padova 66, 21 – 42.Google Scholar
  9. 9.
    D. Hoffmann and F.-W. SÄfke, [1992] Integrale. Mannheim.Google Scholar
  10. 10.
    J. KisyŃski, [1968] On the generation of tight measures. Studia Math. 30, 141 – 151.Google Scholar
  11. 11.
    H. König, [1992] Daniell-Stone integration without the lattice condition and its application touniform algebras. Ann. Univ. Saraviensis Ser. Math. 4, 1 – 91.Google Scholar
  12. 12.
    H. König, [1997a] Measure and Integration: An Advanced Course in Basic Procedures and Applications. Berlin.Google Scholar
  13. 13.
    H. König, [1997b] Image measures and the so-called image measure catastrophe. Positivity 1, 255 – 270.Google Scholar
  14. 14.
    H. König, [1998a] Measure and integration: Mutual generation of outer and inner premeasures. Preprint.Google Scholar
  15. 15.
    H. König, [1998b] Measure and integration: Integral representations of isotone functionals. Preprint.Google Scholar
  16. 16.
    M. Leinert, [1995] Integration und Maβ. Braunschweig.Google Scholar
  17. 17.
    L. Schwartz, [1973] Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford.Google Scholar
  18. 18.
    F. Topsøe, [1970a] Compactness in spaces of measures. Studia Math. 36, 195 – 212.Google Scholar
  19. 19.
    F. Topsøe, [1970b] Topology and Measure. LNM 133. Berlin-Heidelberg-New York.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Heinz König
    • 1
  1. 1.Fachbereich MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations