Advertisement

Measure and Integration: The basic extension theorems

  • Heinz KönigEmail author
Chapter
  • 1.1k Downloads

Abstract

The present article returns to the new foundations of measure and integration due to the author. In this development the basic extension procedures lead from the so-called outer and inner premeasures to their unique maximal extensions. The initial version was for extended real valued set functions. In the sequel we want to achieve a major simplification, in that we develop the procedures—with no loss in the essentials—in the traditional frame of nonnegative set functions. The final section then will obtain an important extension theorem in the inner theories.

Keywords

Set functions on lattices Outer and inner premeasures and their maximal extensions The Carathéodory class Characterization theorems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogachev, V.I.: Measure Theory, vols. I–II. Springer, New York (2007)Google Scholar
  2. 2.
    Carathéodory, C.: Über das lineare Mass von Punktmengen - eine Verallgemeinerung des Längenbegriffs. Nachr.K.Ges.Wiss.Göttingen, Math.-Nat.Kl. 1914, pp. 404–426. Reprinted in: Gesammelte Mathematische Schriften, vol. IV, pp. 249–275. C.H.Beck, 1956Google Scholar
  3. 3.
    Fremlin, D.H.: Measure Theory, vols. 1–4. Torres Fremlin 2000–2003 (in a reference with number the first digit indicates its volume)Google Scholar
  4. 4.
    König, H.: Measure and Integration: An Advanced Course in Basic Procedures and Applications. Springer (1997) [corr. reprint (2009)]Google Scholar
  5. 5.
    König, H.: The product theory for inner premeasures. Note Mat. 17, 235–249 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    König, H.: Measure and integration: an attempt at unified systematization. Rend. Istit. Mat. Univ. Trieste 34, 155–214 (2002). Preprint No. 42. http://www.math.uni-sb.de
  7. 7.
    König, H.: New facts around the Choquet integral. Séminaire d’Analyse Fonctionelle, U Paris VI, 11 Avril 2002. Preprint No. 62. http://www.math.uni-sb.de
  8. 8.
    König, H.: Projective limits via inner premeasures and the true Wiener measure. Mediterr. J. Math. 1, 3–42 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    König, H.: Stochastic processes on the basis of new measure theory. In: Proc. Conf. Positivity IV—Theory and Applications, TU Dresden, 25–29 July 2005, pp. 79–92. Preprint No. 107. http://www.math.uni-sb.de
  10. 10.
    König, H.: Measure and integral: new foundations after one hundred years. In: Functional Analysis and Evolution Equations (The Günter Lumer Volume), pp. 405–422. Birkhäuser (2007). Preprint No. 175. http://www.math.uni-sb.de
  11. 11.
    Marczewski, E.: On compact measures. Fund. Math. 40, 113–124 (1953)MathSciNetGoogle Scholar
  12. 12.
    Pollard, D.:AUser’sGuide to Measure Theoretic Probability. Cambridge University Press, Cambridge (2002)Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Fakultät für Mathematik und InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations