Advertisement

Notes on the projective limit theorem of Kolmogorov

  • Heinz KönigEmail author
Chapter
  • 1.1k Downloads

Abstract

The new systematization in measure and integration due to the author produced a version of the Kolmogorov projective limit theorem which is far more comprehensive than the previous ones. The present article is devoted to several consequences. In particular one obtains a topological version which applies to arbitrary Hausdorff spaces.

Keywords

Inner premeasures Sequential and nonsequential ones Consistent families Projective limits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, H.: Wahrscheinlichkeitstheorie. 4th edn. de Gruyter (1991) (English translation 1996)Google Scholar
  2. 2.
    Bogachev, V.I.: Measure Theory, vol. I–II. Springer, Berlin (2007)Google Scholar
  3. 3.
    Kallenberg, O.: Foundation of Modern Probability, 2nd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  4. 4.
    Klenke, A.: Wahrscheinlichkeitstheorie, 2nd edn. Springer, Berlin (2008)zbMATHGoogle Scholar
  5. 5.
    Kolmogorov (=ff), A.: Grundbegriffe derWahrscheinlichkeitsrechnung. Springer (1933) (reprint 1973)Google Scholar
  6. 6.
    König, H.: Measure and Integration: An Advanced Course in Basic Procedures and Applications. Springer (1997) (corr. reprint 2009)Google Scholar
  7. 7.
    König, H.: The product theory for inner premeasures. Note Mat. 17, 235–249 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    König, H.: Measure and integration: an attempt at unified systematization. Rend. Istit. Mat. Univ. Trieste 34, 155–214 (2002). (Preprint no. 42 under http://www.math.uni-sb.de.)
  9. 9.
    König, H.: Projective limits via inner premeasures and the true Wiener measure. Mediterr. J. Math. 1, 3–42 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    König, H.: Stochastic processes in terms of inner premeasures. Note Mat. 25(2), 1–30 (2005/2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    König, H.: The new maximal measures for stochastic processes. J. Anal. Appl. 26(1), 111–132 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    König, H.: Stochastic processes on the basis of new measure theory. In: Proc.Conf. Positivity IV—Theory and Applications, TU Dresden 25–29 July 2005, pp. 79–92. (Preprint (with corrections) No. 107 under http://www.math.uni-sb.de.)
  13. 13.
    König, H.: Measure and Integral: New foundations after one hundred years. In: Functional Analysis and Evolution Equations (The Günter Lumer Volume). Birkhäuser 2007, pp. 405–422. (Preprint (with mreformulations) No. 175 under http://www.math.uni-sb.de.)
  14. 14.
    König, H.: Measure and Integration: The basic extension theorems. (Preprint No. 230 under http://www.math.uni-sb.de.)
  15. 15.
    Marczewski, E.: On compact measures. Fund. Math. 40, 113–124 (1953)MathSciNetGoogle Scholar
  16. 16.
    Rao, M.M.: Measure Theory and Integration, 2nd edn. Marcel Dekker, New York (2004)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Fakultät für Mathematik und InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations