Fubini-Tonelli theorems on the basis of inner and outer premeasures

  • Heinz KönigEmail author


The present article obtains comprehensive Fubini-Tonelli type theorems on the basis of the author’s work in measure and integration. The basic tools are the product theory and the complemental pairs of inner and outer premeasures.


Fubini and Tonelli type theorems inner and outer premeasures inner and outer envelopes of set functions the Choquet integral products of set functions complemental pairs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bourbaki: Elements of Mathematics. Integration II, Chapter IX, Springer, Berlin (2004); transl. from: Éléments de Mathématique. Intégration. Chap. IX, Hermann, Paris (1969).Google Scholar
  2. 2.
    J. Elstrodt: Maβ- und Integrationstheorie, 5th Ed., Springer, Berlin (2007).zbMATHGoogle Scholar
  3. 3.
    D. H. Fremlin: Measure Theory, Vol. 1-4, Torres Fremlin, Colchester (2000–2003), available at: ""; (in a numbered reference the first digit indicates its volume).
  4. 4.
    H. König: Measure and Integration: An Advanced Course in Basic Procedures and Applications, Springer, Berlin (1997); corr. reprint (2009).Google Scholar
  5. 5.
    H. König: The product theory for inner premeasures, Note Mat. 17 (1997) 235–249.MathSciNetzbMATHGoogle Scholar
  6. 6.
    H. König: Measure and integration: mutual generation of outer and inner premeasures, Ann. Univ. Sarav., Ser. Math. 9 (1998) 99–122.MathSciNetzbMATHGoogle Scholar
  7. 7.
    H. König: Measure and integration: an attempt at unified systematization, Rend. Ist. Mat. Univ. Trieste 34 (2002) 155–214; available at:"" (Preprint no. 42).
  8. 8.
    H. König: Measure and integral: new foundations after one hundred years, in: Functional Analysis and Evolution Equations. The Günter Lumer Volume, H. Amann et al. (ed.), Birkhäuser, Basel (2008) 405–422; available at: "" (Preprint no. 175).
  9. 9.
    E. Pap: Some elements of the classical measure theory, in: Handbook of Measure Theory, Vol. I, E. Pap (ed.), Elsevier, Amsterdam (2002) 27–82.Google Scholar
  10. 10.
    M. M. Rao: Measure Theory and Integration, 2nd. Ed., Marcel Dekker, New York (2004).zbMATHGoogle Scholar
  11. 11.
    L. Schwartz: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford Univ. Press, Oxford (1973).zbMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Fakultät für Mathematik und InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations