New versions of the Radon-Nikodým theorem

  • Heinz KönigEmail author


On the basis of recent developments in measure theory the present note obtains a few new versions of the classical Radon-Nikodým theorem, with the aim to combine simple formulations with wide domains of application.


Measure Theory Radon Measure Wide Domain Lattice Minimum Entire Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bauer, Mass-und Integrationstheorie. 2nd. ed. Berlin 1992; English translation 2001.Google Scholar
  2. [2]
    D. Candeloro and A. Volčič, Radon-Nikodým theorems. In: Handbook of Measure Theory. E. Pap ed., 249–294, Amsterdam 2002.Google Scholar
  3. [3]
    J. Elstrodt, Mass-und Integrationstheorie. 2nd.ed. Berlin-Heidelberg-New York 1999.Google Scholar
  4. [4]
    D. H. Fremlin, Measure Theory. Vol. 1-4 Torres Fremlin 2000–2003 (in the references the first digit of an item indicates its volume).Google Scholar
  5. [5]
    P. R. Halmos, Measure Theory. New York 1950; Berlin 1974.Google Scholar
  6. [6]
    D. Kölzow, Adaptions-und Zerlegungseigenschaften von Massen. Math. Z. 94, 309–321 (1966).Google Scholar
  7. [7]
    D. Kölzow, Differentiation von Massen. LNM 65, Berlin-Heidelberg-New York 1968.Google Scholar
  8. [8]
    H. König, Measure and Integration: An Advanced Course in Basic Procedures and Applications. Berlin- Heidelberg-New York 1997.Google Scholar
  9. [9]
    H. König, What are signed contents and measures? Math. Nachr. 204, 101–124 (1999).Google Scholar
  10. [10]
    H. König, Measure and Integration: An attempt at unified systematization. Rend. Ist. Mat. Univ. Trieste 34, 155–214 (2002). Preprint under Scholar
  11. [11]
    H. König, Errata et Addenda. Scholar
  12. [12]
    M. Leinert, Integration und Maß. Braunschweig 1995.Google Scholar
  13. [13]
    L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford 1973.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Fakultät für Mathematik und InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations