Advertisement

Projective limits via inner premeasures and the true Wiener measure

  • Heinz KönigEmail author
Chapter
  • 1.1k Downloads

Abstract

The paper continues the author’s work in measure and integration, which is an attempt at unified systematization. It establishes projective limit theorems of the Prokhorov and Kolmogorov types in terms of inner premeasures. Then it specializes to obtain the (one-dimensional) Wiener measure on the space of real-valued functions on the positive halfline as a probability measure defined on an immense domain: In particular the subspace of continuous functions will be measurable of full measure - and not merely of full outer measure, as the usual projective limit theorems permit to conclude.

Keywords

Projective limit theorems of the Prokhorov and Kolmogorov types Prokhorov condition inner premeasures and their inner extensions direct and inverse images of inner premeasures transplantation theorems Wiener measure and Wiener premeasure Brownian convolution semigroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.Bauer, Wahrscheinlichkeitstheorie. 4th ed. de Gruyter 1991, English translation 1996.Google Scholar
  2. [2]
    N.Bourbaki, Intégration, Chap.IX. Hermann 1969.zbMATHGoogle Scholar
  3. [3]
    N.Bourbaki, Théorie des Ensembles. Hermann 1970.Google Scholar
  4. [4]
    C.Dellacherie and P.A.Meyer, Probability and Potential. North-Holland 1978.Google Scholar
  5. [5]
    D.H.Fremlin, Measure Theory. Vol.1-3 Torres Fremlin 2000-2002, Vol.4 Preprint (in the references the first digit of an item indicates its volume). http://www.essex.ac. uk/maths/staff/fremlin/mt.htm.Google Scholar
  6. [6]
    W.Hackenbroch and A.Thalmaier, Stochastische Analysis. Teubner 1994.Google Scholar
  7. [7]
    E.Hewitt and K.A.Ross, Abstract Harmonic Analysis I. Springer 1963.Google Scholar
  8. [8]
    K.Itô and H.P.McKean Jr., Diffusion Processes and their Sample Paths. Springer 1965.Google Scholar
  9. [9]
    J.Kisyński, On the generation of tight measures. Studia Math. 30(1968), 141-151.MathSciNetCrossRefGoogle Scholar
  10. [10]
    A.Kolmogorov (=Kolmogoroff), Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer 1933, Reprint 1973.Google Scholar
  11. [11]
    H.König, Measure and Integration: An Advanced Course in Basic Procedures and Applications. Springer 1997.Google Scholar
  12. [12]
    H.König, Image measures and the so-called image measure catastrophe. Positivity 1(1997), 255-270.MathSciNetCrossRefGoogle Scholar
  13. [13]
    H.König, The product theory for inner premeasures. Note di Matematica 17(1997), 235-249.MathSciNetGoogle Scholar
  14. [14]
    H.König, Upper envelopes of inner premeasures. Ann.Inst. Fourier 50(2000), 401-422.MathSciNetCrossRefGoogle Scholar
  15. [15]
    H.König, Measure and Integration: An attempt at unified systematization. In: Workshop on Measure Theory and Real Analysis, Grado 2001. Rend. Istit. Mat. Univ. Trieste 34(2002), 155-214.Google Scholar
  16. [16]
    H.König, The (sub/super) additivity assertion of Choquet. Studia Math. 157(2003), 171-197.Google Scholar
  17. [17]
    Z.Lipecki, On unique extensions of positive additive set functions. Arch.Math. 41(1983), 71-79.MathSciNetCrossRefGoogle Scholar
  18. [18]
    J.Łoś and E.Marczewski, Extensions of measure. Fund. Math. 36(1949), 267-276.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Yu.V.Prokhorov, Convergence of random processes and limit theorems in probability theory. Theor.Prob.Appl. 1(1956), 156-214.MathSciNetCrossRefGoogle Scholar
  20. [20]
    L.Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford Univ. Press 1973.zbMATHGoogle Scholar
  21. [21]
    K.R.Stromberg, Probability for Analysts. Chapman & Hall 1994.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Fakultät für Mathematik und InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations