Skip to main content

Quantitative Structure–Activity Relationship Studies on Sulfonamide-Based MMP Inhibitors

  • Chapter
  • First Online:
Matrix Metalloproteinase Inhibitors

Part of the book series: Experientia Supplementum ((EXS,volume 103))

Abstract

Matrix metalloproteinases (MMPs) regulate a wide range of biological functions, but their overactivation leads to a wide array of disease processes such as rheumatoid arthritis, ostereoarthritis, tumor metastatis, multiple sclerosis, congestive heart failure, and a host of others. Therefore, the study of MMP inhibitors has evoked a great interest among scientists. As a result, different groups of compounds have been synthesized and studied for MMP inhibitions. Among them, a large number of structurally novel sulfonamide derivatives have been reported to be potential MMP inhibitors, but only a few have reached to the final stage of clinical trial. Many authors have made quantitative structure–activity relationship (QSAR) studies on them to provide the guidelines to design more potent MMP inhibitors. This article presents a comprehensive review on all such QSARs reported with critical assessment in order to provide a deeper insight into the structure–activity relationship of sulfonamides which can be used to synthesize highly potential drugs of pharmaceutical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADME:

Adsorption, distribution, metabolism and excretion

ClogP :

Calculated hydrophobicity

CMR:

Calculated molar refractivity

EGCG:

Epigallocatechin gallate

HIV-1:

Human immune-deficiency virus of type 1

HNE:

Human neutrophil elastase

MgVol:

MacGovan volume

MMPIs:

Matrix metalloproteinase inhibitors

QSAR:

Quantitative structure–activity relationship

TACE:

Tumor necrosis factor-α converting enzyme

ZBG:

Zinc binding group

References

  • Almstead NG, Bradley RS, Pikul S, De B, Natchus MG, Taiwo YO, Gu F, Williams LE, Hynd BA, Janusz MJ, Dunaway CM, Mieling GE (1999) Design, synthesis, and biological evaluation of potent thiazine- and thiazepine-based matrix metalloproteinase inhibitors. J Med Chem 42:4547–4562

    Article  CAS  PubMed  Google Scholar 

  • Annabi B, Lachambre MP, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R (2002) Green tea polyphenol (-)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1- MMP-driven migration in glioblastoma cells. Biochim Biophys Acta 1542:209–220

    Article  CAS  PubMed  Google Scholar 

  • Babine RE, Bender SL (1997) Molecular recognition of protein-ligand complexes: Applications to drug design. Chem Rev 97:1359–1472

    Article  CAS  PubMed  Google Scholar 

  • Barta TE, Becker DP, Bedell LJ, De Crescenzo GA, McDonald JJ, Mehta P, Munie GE, Villamil CI (2000a) Selective, orally active MMP inhibitors with an aryl backbone. Bioorg Med Chem Lett 11:2481–2483

    Article  Google Scholar 

  • Barta TE, Becker DP, Bedell LJ, De Crescenzo GA, McDonald JJ, Munie GE, Rao S, Shieh HS, Stegeman R, Stevens AM, Villamil CI (2000b) Synthesis and activity of selective MMP inhibitors with an aryl backbone. Bioorg Med Chem Lett 10:2815–2817

    Article  CAS  PubMed  Google Scholar 

  • Berton A, Rigot V, Huet E, Decarme M, Eeckhout Y, Patthy L, Godeau G, Hornebeck W, Bellon G, Emonard H (2001) Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases A and B by long-chain unsaturated fatty Acids. J Biol Chem 276:20458–20465

    Article  CAS  PubMed  Google Scholar 

  • Bottomley KM, Johnson WH, Walter DS (1998) Matrix metalloproteinaseinhibitors in arthritis. J Enzyme Inhib 13:79–101

    Article  CAS  PubMed  Google Scholar 

  • Brandstetter H, Engh RA, Von Graf RE, Moroder L, Huber R, Bode W, Grams F (1998) Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data. Protein Sci 7:1303–1309

    Article  CAS  PubMed  Google Scholar 

  • Casini A, Scozzafava A, Supuran CT (2002) Sulfonamide derivatives with protease inhibitory action as anticancer, anti-inflammatory and antiviral agents. Expert opinion Ther Agents 12:1307–1327

    Article  CAS  Google Scholar 

  • Ende C, Gebhardt R (2004) Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids. Planta Med 70:1006–1008

    Article  CAS  PubMed  Google Scholar 

  • Fingleton B (2003) Matrix metalloproteinase inhibitors for cancer therapy: the current situation and future prospects. Expert Opin Ther Targets 7:385–397

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Nakao Y, Matsunaga S, Seiki M, Itoh Y, Yamashita J, Van Soest RW, Fusetani N (2003) Ageladine A: an antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge agelas nakamurai. J Am Chem Soc 125:15700–15701

    Article  CAS  PubMed  Google Scholar 

  • Grimm T, Schafer A, Hogger P (2004) Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol). Free Radic Biol Med 36:811–822

    Article  CAS  PubMed  Google Scholar 

  • Gupta SP (2007) Quantitative structure–activity relationship studies on zinc-containing metalloproteinase inhibitors. Chem Rev 107:3042–3087

    Article  CAS  PubMed  Google Scholar 

  • Gupta SP (2011) QSAR and molecular modeling. Anamaya, New Delhi

    Google Scholar 

  • Gupta SP, Kumaran S (2005a) A quantitative structure–activity relationship study on some series of anthranilic acid-based matrix metalloproteinase inhibitors. Bioorg Med Chem 13:5454–5462

    Article  CAS  PubMed  Google Scholar 

  • Gupta SP, Kumaran S (2005b) Quantitative structure–activity relationship studies on matrix metalloproteinase inhibitors: bicyclic heteroaryl hydroxamic acid analogs. Lett Drug Des Discover 2:522–528

    Article  CAS  Google Scholar 

  • Gupta SP, Kumaran S (2006a) Quantitative structure–activity relationship studies on matrix metalloproteinase inhibitors: piperazine, piperidine and diazepine hydroxamic acid analogs. Asian J Biochem 1:211–223

    Article  CAS  Google Scholar 

  • Gupta SP, Kumaran S (2006b) Quantitative structure–activity relationship studies on benzodiazepine hydroxamic acid inhibitors of matrix metalloproteinases and tumor necrosis factor-α converting enzyme. Asian J Biocem 1:47–56

    Article  CAS  Google Scholar 

  • Gupta SP, Kumaran S (2006c) Quantitative structure–activity relationship studies on matrix metalloproteinase inhibitors: hydroxamic acid analogs. Med Chem 2:243–250

    Article  CAS  PubMed  Google Scholar 

  • Gupta SP, Maheswaran B, Pande V, Kumar D (2003b) A comparative quantitative structure–activity relationship study on carbonic anhydrase and matrix metalloproteinase inhibition by sulfonylated amino acid hydroxymates. J Enzyme Inhib Med Chem 18:7–13

    Article  CAS  PubMed  Google Scholar 

  • Hannessian S, Bouzbouz S, Boudon A, Tucker GC, Peyroulan D (1999) Picking the S1, S1′ and S2′ pockets of matrix metalloproteinases. A niche for potent acyclic sulfonamide inhibitors. Bioorg Med Chem Lett 9:1691–1696

    Article  Google Scholar 

  • Hodgson JA (1995) Remodeling MMPIs. Biotechnology 30:554–557

    Google Scholar 

  • Jeng AY, Chou M, Parker DT (1998) Sulfonamide-based hydroxamic acids as potent inhibitors of mouse macrophage metalloelastase. Bioorg Med Chem Lett 8:897–902

    Article  CAS  PubMed  Google Scholar 

  • Jin UH, Lee JY, Kang SK, Kim JK, Park WH, Kim JG, Moon SK, Kim CH (2005) A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid) is a new type and strong matrix metalloproteinase-9 inhibitor: isolation and identification from methanol extract of Euonymus alatus. Life Sci 77:2760–2769

    Article  CAS  PubMed  Google Scholar 

  • Johnson LL, Dyer R, Hupe DJ (1998) Matrix metalloproteinases. Curr Opin Chem Biol 2:466–471

    Article  CAS  PubMed  Google Scholar 

  • Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic, New York

    Google Scholar 

  • Kiyama R, Tamura Y, Watanabe F, Tsuzuki H, Ohtani M, Yodo M (1999) Homology modeling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. J Med Chem 42:1723–1738

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Gupta SP (2003) A quantitative structure–activity relationship study on some matrix metalloproteinase and collagenase inhibitors. Bioorg Med Chem 11:421–426

    Article  CAS  PubMed  Google Scholar 

  • Kumaran S, Gupta SP (2007a) A quantitative structure–activity relationship study on matrix metalloproteinase inhibitors: piperidine sulfonamide aryl hydroxamic acid analogs. J Enzyme Inhib Med Chem 22:23–27

    Article  CAS  PubMed  Google Scholar 

  • Kumaran S, Gupta SP (2007b) A quantitative structure–activity relationship study on some novel series of hydroxamic acid analogs acting as matrix metalloproteinase inhibitors. Med Chem 3:167–173

    Article  CAS  PubMed  Google Scholar 

  • Letavic MA, Axt MZ, Barberia JT, Carty TJ, Danley DE, Geoghegan KF, Halim NS, Hoth LR, Kamath AV, Laird ER, Lopresti-Morrow LL, McClure KF, Mitchell PG, Natarajan V, Noe MC, Pandit J, Reeves L, Schulte GK, Snow SL, Sweeney FJ, Tan DH, Yu CH (2002) Synthesis and biological activity of selective pipecolic acid-based TNF-alpha converting enzyme (TACE) inhibitors. Biorg Med Chem Lett 12:1387–1390

    Article  CAS  Google Scholar 

  • Letavic MA, Barberia JT, Carty TJ, Hardink JR, Liras J (2003) Synthesis and biological activity of piperazine-based dual MMP-13 and TNF-alpha converting enzyme inhibitors. Bioorg Med Chem Lett 13:3243–3246

    Article  CAS  PubMed  Google Scholar 

  • Levin JI, DiJoseph JF, Killar LM, Sung A, Walter T, Sharr MA, Roth CA, Skotnicki JS, Albright JD (1998) The synthesis and biological activity of a novel series of diazepine MMP inhibitors. Bioorg Med Chem Lett 8:2657–2662

    Article  CAS  PubMed  Google Scholar 

  • Levin JI, Chen J, Du M, Hogan M, Kincaid S, Nelson FC, Venkatesan AM, Wehr T, Zask A, DiJoseph J, Killar LM, Skala S, Sung A, Sharr M, Roth C, Jin G, Cowling R, Mohler KM, Black RA, March CJ, Skotnicki JS (2001a) The discovery of anthranilic acid-Based MMP inhibitors. Part 2: SAR of the 5-position and P1′ groups. Bioorg Med Chem Lett 11:2189–2192

    Article  CAS  PubMed  Google Scholar 

  • Levin JI, Chen J, Du MT, Nelson FC, Wehr T, Zask A, DiJoseph JF, Killar LM, Skala S, Sung A, Sharr M, Roth CE, Jin G, Cowling R, Di L, Sherman M, Xu ZB, March CJ, Mohler KM, Black RA, Skotnicki JS (2001b) The discovery of anthranilic acid-based MMP inhibitors. Part 3: incorporation of basic amines. Bioorg Med Chem Lett 11:2975–2978

    Article  CAS  PubMed  Google Scholar 

  • Levin JI, Du MT, DiJoseph JF, Killar LM, Sung A, Walter T, Sharr MA, Roth CE, Moy FJ, Powers R, Jin G, Cowling R, Skotnicki JS (2001c) The discovery of anthranilic acid-based MMP inhibitors. Part 1: SAR of the 3-position. Bioorg Med Chem Lett 11:235–238

    Article  CAS  PubMed  Google Scholar 

  • Levin JI, Chen J, Du MT, Nelson FC, Killar LM, Skala S, Sung A, Jin G, Cowling R, Barone D, March CJ, Mohler KM, Black RA, Skotnicki JS (2002) Anthranilate sulfonamide hydroxamate TACE inhibitors. Part 2: SAR of the acetylenic P1′ group. Bioorg Med Chem Lett 12:1199–1202

    Article  CAS  PubMed  Google Scholar 

  • Levin JI, Chen JM, Cheung K, Cole D, Crago C, Santos ED, Du X, Khafizova G, MacEwan G, Niu C, Salaski EJ, Zask A, Cummons T, Sung A, Xu J, Zhang Y, Xu W, Ayral-Kaloustian S, Jin G, Cowling R, Barone D, Mohler KM, Black RA, Skotnicki JS (2003) Acetylenic TACE inhibitors. Part 1. SAR of the acyclic sulfonamide hydroxamates. Bioorg Med Chem Lett 13:2799–2803

    Article  CAS  PubMed  Google Scholar 

  • Levin JI, Nelson FC, Delos SE, Du MT, MacEwan G, Chen JM, Ayral-Kaloustian S, Xu J, Jin G, Cummons T, Barone D (2004) Benzodiazepine inhibitors of the MMPs and TACE. Part 2. Biorg Med Chem Lett 14:4147–4151

    Article  CAS  Google Scholar 

  • Li J, Rush TS III, Li W, DeVincentis D, Du X, Hu Y, Thomason JR, Xiang JS, Skotnicki JS, Tam S, Cunningham KM, Chockalingam PS, Morris EA, Levin JI (2005) Biorg Med Chem Lett 15:4961–4966

    Article  CAS  Google Scholar 

  • Ma D, Wu W, Yang G, Li J, Li J, Ye Q (2004) Tetrahydroisoquinoline based sulfonamide hydroxamates as potent matrix metalloproteinase inhibitors. Bioorg Med Chem Lett 14:47–50

    Article  PubMed  Google Scholar 

  • MacPherson LJ, Bayburt EK, Capparelli MP, Carroll BJ, Goldstein R, Justice MR, Zhu L, Hu S-I, Melton RA, Fryer L, Goldberg RL, Doughty JR, Spirito S, Blancuzzi V, Wilson D, O’Byrne EM, Ganu V, Parker DT (1997) Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J Med Chem 40:2525–2532

    Article  CAS  PubMed  Google Scholar 

  • Martin FM, Beckett PR, Bellamy CL, Courtney PF, Davies SJ, Drummond AH, Dodd R, Pratt LM, Patel SR, Ricketts ML, Todd RS, Tuffnell AR, Ward JWS, Whittaker M (1999) The synthesis and biological evaluation of non-peptidic matrix metalloproteinase inhibitors. Bioorg Med Chem Lett 9:2887–2892

    Article  CAS  PubMed  Google Scholar 

  • Nagase H (1997) Activation mechanisms of matrixmetalloproteinases. Biol Chem 378:151–160

    CAS  PubMed  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Ikeda K, Sakai Y (2001) Inhibitory effect of magnolol and honokiol from magnolia obovata on human fibrosarcoma HT-1080. Invasiveness in vitro. Planta Med 67:705–708

    Article  CAS  PubMed  Google Scholar 

  • Natchus MG, Bookland RG, De B, Almstead NG, Pikul S, Janusz MJ, Heitmeyer SA, Hookfin EB, Hsieh LC, Dowty ME, Dietsch CR, Patel VS, Garver SM, Gu F, Pokruss ME, Mieling GE, Baker TR, Foltz DJ, Peng SX, Bornes DM, Strojnowski MJ, Taiwo YO (2000) Development of new hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines. J Med Chem 43:4948–4963

    Article  CAS  PubMed  Google Scholar 

  • Nelson FF, Santosh ED, Levin JI, Chen JM, Skotnicki JS, DiJoseph JF, Sharr MA, Sung A, Killar LM, Cowling R, Jin G, Roth CE, Albright JD (2002) Benzodiazepine inhibitors of the MMPs and TACE. Bioorg Med Chem Lett 12:2867–2870

    Article  CAS  PubMed  Google Scholar 

  • Noe MC, Natarajan V, Snow SL, Wolf-Gouveia LA, Mitchell PG, Lopresti-Morrow L, Reeves LM, Yocum SA, Otterness I, Bliven MA, Carty TJ, Barberia JT, Sweeney FJ, Liras JL, Vaughn M (2005) Discovery of 3-OH-3-methylpipecolic hydroxamates: potent orally active inhibitors of aggrecanase and MMP-13. Bioorg Med Chem Lett 15:3385–3388

    Article  CAS  PubMed  Google Scholar 

  • O’Brien PM, Ortwine DF, Pavlovsky AG, Picard JA, Sliskovic DR, Roth BD, Dyer RD, Johnson LL, Man CF, Hallak HJ (2000) Structure–activity relationships and pharmacokinetic analysis for a series of potent, systemically available biphenylsulfonamide matrix metalloproteinase inhibitors. J Med Chem 43:156–166

    Article  PubMed  Google Scholar 

  • Park WH, Kim SH, Kim CH (2005) A new matrix metalloproteinase-9 inhibitor 3,4-dihydroxycinnamic acid (caffeic acid) from methanol extract of Euonymus alatus: isolation and structure determination.Toxicology 207:383–390

    Article  CAS  PubMed  Google Scholar 

  • Pikul S, McDow DK, Almstead NG, De B, Natchus MG, Taiwo YO, Williams LE, Hynd BA, Hsieh LC, Janusz MJ, Gu F, Mieling GE (2001a) Heterocycle-based MMP inhibitors with P2′ substituents. Bioorg Med Chem Lett 11:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Pikul S, Ohler NE, Ciszewski G, Laufersweiler MC, Almstead NG, De B, Natchus MG, Hsieh LC, Janusz MJ, Peng SX, Branch TM, King SL, Taiwo YO, Mieling GE (2001b) Potent and selective carboxylic acid-based inhibitors of matrix metalloproteinases. J Med Chem 44:2499–2502

    Article  CAS  PubMed  Google Scholar 

  • Reiter LA, Robinson RP, McClure KF, Jones CS, Reese MR, Mitchell PG, Otterness IG, Bliven ML, Liras J, Cortina SR (2004) Pyran-containing sulfonamide hydroxamic acids: potent MMP inhibitors that spare MMP-1. Bioorg Med Chem Lett 14:3389–3395

    Article  CAS  PubMed  Google Scholar 

  • Schröder J, Henke A, Wenzel H, Brandstetter H, Stammler HG, Stammler A, Pfeiffer WD, Tschesche H (2001) Structure-based design and synthesis of potent matrix metalloproteinase inhibitors derived from a 6H-1,3,4-thiadiazine scaffold. J Med Chem 44:3231–3243

    Article  PubMed  Google Scholar 

  • Scozzafava A, Supuran CT (2000a) Carbonic anhydrase and matrix metalloproteinase inhibitors: sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes. J Med Chem 43:3677–3687

    Article  CAS  PubMed  Google Scholar 

  • Scozzafava A, Supuran CT (2000b) Protease inhibitors: Synthesis of potent bacterial collagenase and matrix metalloproteinase inhibitors incorporating N-4-nitrobenzylsulfonylglycine hydroxamate moieties. J Med Chem 43:1858–1865

    Article  CAS  PubMed  Google Scholar 

  • Skiles JW, Monovich LG, Jeng AY (2000) Matrix metalloproteinase inhibitors for treatment of cancer. Annu Rep Med Chem 35:167–176

    Article  CAS  Google Scholar 

  • Smithkline Beecham (1997) Hydroxamic acid based inhibitors of the formation of CD23 and TNF. WO-09743250

    Google Scholar 

  • Subramaniam R, Haldar MK, Tobwala S, Ganguly B, Srivastava DK, Mallik S (2008) Novel bis-(arylsulfonamide) hydroxamate-based selective MMP inhibitors. Bioorg Med Chem Lett 18:3333–3337

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A (2002) Matrix metalloproteinases (MMPs). In: Smith HJ, Simons C (eds) Proteinase and peptidase inhibition: recent potential targets for drug development. Taylor and Francis, London, pp 35–61

    Google Scholar 

  • Supuran CT, Casini A, Scozzafava A (2003) Protease inhibitors of the sulfonamide type: anticancer, anti-inflammatory, and antiviral agents. Med Chem Res 23:535–558

    CAS  Google Scholar 

  • Venkatesan A, Davis JM, Grosu GT, Baker J, Ellingboe J, Arie Z, Levin JI, Sandanayaka VP, Mila D, Skotnicki JS, DiJoseph JF, Sung A, Michele AS, Killar LM, Thomas W, Guixina J, Cowling R, Tillett J, Weiguang Z, McDevitt J, Zhang BX (2003) Synthesis and structure–activity relationship of N-substituted 4-arylsulfonylpiperidine-4-hydroxamic acids as novel, orally active matrix metalloproteinase inhibitors for the treatment of osteoarthritis. J Med Chem 46:2376–2396

    Article  Google Scholar 

  • Verma RP, Hansch C (2007) Matrix metalloproteinase (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 1:2223–2268

    Article  Google Scholar 

  • Whittaker M, Floyd CD, Brown P, Gearing AJH (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99:2735–2776

    Article  CAS  PubMed  Google Scholar 

  • Zask A, Gu Y, Albright JD, Du X, Hogan M, Levin JI, Chen JM, Killar ML, Sung A, DiJoseph JF, Sharr MA, Roth CE, Skala S, Jin G, Kowling R, Mohler KM, Barone D, Black R, March C, Skotnicki JS (2003) Synthesis and SAR of bicyclic heteroaryl hydroxamic acid MMP and TACE inhibitors. Bioorg Med Chem Lett 13:1487–1490

    Article  CAS  PubMed  Google Scholar 

  • Zask A, Kaplan J, Du X, MacEwan G, Sandanayaka V, Eudy N, Levin J, Jin G, Xu J, Cummons T, Barone D, Ayral-Kaloustian S, Skotnicki J (2005) Nonpeptide αvβ3 antagonists: identification of potent, chain-shortened 7-oxo RGD mimetics. Bioorg Med Chem Lett 15:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishali M. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Patil, V.M., Gupta, S.P. (2012). Quantitative Structure–Activity Relationship Studies on Sulfonamide-Based MMP Inhibitors. In: Gupta, S. (eds) Matrix Metalloproteinase Inhibitors. Experientia Supplementum, vol 103. Springer, Basel. https://doi.org/10.1007/978-3-0348-0364-9_6

Download citation

Publish with us

Policies and ethics