Skip to main content

Generalized Lax Pair Operator Method and Nonautonomous Solitons

  • Conference paper
  • First Online:
  • 756 Accesses

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 220))

Abstract

The generalized Lax pair operator method and the concept of nonautonomous solitons in nonlinear and dispersive nonautonomous physical systems are introduced. Novel soliton solutions for the nonautonomous nonlinear Schrödinger equation (NLSE) models with linear and harmonic oscillator potentials substantially extend the concept of classical solitons and generalize it to the plethora of nonautonomous solitons that interact elastically and generally move with varying amplitudes, speeds and spectra adapted both to the external potentials and to the dispersion and nonlinearity variations. The concept of the designable integrability of the variable coefficients nonautonomous NLSE is introduced. The nonautonomous soliton concept and the designable integrability can be applied to different physical systems, from hydrodynamics and plasma physics to nonlinear optics and matter-waves and offer many opportunities for further scientific studies

Mathematics Subject Classification (2000). 47A40; 47F505; 35Q55; 35Q58; 37K10; 37K15; 37K35; 37K40.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett. 15 (1965), 240–243.

    Article  MATH  Google Scholar 

  2. A. Hasegawa, Optical Solitons in Fibers, Springer-Verlag, Berlin, 1989; A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Clarendon Press, New York,1995; A. Hasegawa and M. Mat sumoto, Optical Solitons in Fibers, Third Edition, Springer-Verlag, Berlin, 2003.

    Google Scholar 

  3. E.M. Dianov, P.V. Mamyshev, A.M. Prokhorov and V.N. Serkin, Nonlinear Effects in Fibers, Harwood Academic Publ., New York, 1989.

    Google Scholar 

  4. J.R. Taylor, Optical solitons – theory and experiment, Cambridge Univ.Press, Cambridge, 1992.

    Google Scholar 

  5. G.P. Agrawal, Nonlinear Fiber Optics, 3rded. Academic Press, San Diego, 2001; G.P. Agrawal, Applications of Nonlinear Fiber-Optics, ibid., 2001.

    Google Scholar 

  6. N.N. Akhmediev and A. Ankiewicz, Solitons. Nonlinear pulses and beams, Charman and Hall, London 1997; N.N. Akhmediev and A. Ankiewicz, Dissipative solitons: from optics to biology and medicine, Vol. 751 Lecture Notes in Physics, Springer 2008.

    Google Scholar 

  7. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19 (1967), 1095–1098.

    Article  MATH  Google Scholar 

  8. P.D. Lax, Commun. on Pure and Applied Mathematics XXI (1968), 467–490.

    Google Scholar 

  9. M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, Phys. Rev. Lett. 31 (1973), 125–128.

    Article  MathSciNet  Google Scholar 

  10. V.E. Zakharov, “Method of Inverse Scattering Problem”, in Solitons, eds. R.K. Bullough and P.J. Caudrey, Springer-Verlag, Berlin, 1980; M.J. Ablowitz, H. Segur, Solitons and Inverse scattering Transform, SIAM: Philadelphia, 1981; P.L. Christiansen, M.P. Sorensen, A.C. Scott (eds.), Nonlinear scienceat the dawn of the 21st century, Lecture Notes in Physics, Springer, Berlin, 2000.

    Google Scholar 

  11. F.D. Tappert, N.J. Zabusky, Phys. Rev. Lett. 27 (1971), 1774–1777.

    Google Scholar 

  12. H.H. Chen, C.S. Liu, Phys. Rev. Lett. 37 (1976), 693–697; Phys.Fluids 21 (1978), 377–380.

    Google Scholar 

  13. F.Calogero and A. Degasperis, Lett. Nuovo Cimento 16 (1976), 425–433; ibid., 16 (1976), 434–438; F. Calogero and A. Degasperis, Spectral transform and solitons: tools to solve and investigate nonlinear evolution equations, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1982.

    Google Scholar 

  14. M.R. Gupta, J. Ray, J. Math.Phys. 22 (1981), 2180–2186.

    Google Scholar 

  15. J.J.E. Herrera, J. Phys.A : Math.Gen. 17 (1984), 95–99.

    Google Scholar 

  16. R. Balakrishman, Phys. Rev.A 32 (1985), 1144–1151.

    Article  Google Scholar 

  17. V.N. Serkin, A. Hasegawa, Phys. Rev. Lett, 85 (2000) 4502–4505; JETP Lett. 72(2000), 89–92; IEEE J. Select. Topics Quant. Electron. 8 (2002) 418–431; V.N. Serkin, T.L. Belyaeva, JETP Lett. 74 (2001), 573–576; V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. Lett. 92 (2004), 199401.

    Google Scholar 

  18. V.N. Serkin, A. Hasegawa, and T.L. Belyaeva, Phys. Rev. Lett. 98 (2007), 074102.

    Article  Google Scholar 

  19. D. Zhao, X.G. He, H.G. Luo, Europ. Phys. J.D 53 (2009), 213–216.

    Google Scholar 

  20. D. Zhao, H.G. Luo, H.Y. Chai, Phys. Lett. A 372 (2008), 5644–5650.

    Google Scholar 

  21. L. Li, X.Z hao, Z. Xu, Phys. Rev. A 78 (2008), 063833; X.Z hao, L. Li, Z. Xu, Phys. Rev. A 79 (2009), 043827.

    Google Scholar 

  22. H.G. Luo, D.Z hao, X.G. He, Phys. Rev. A 79 (2009), 063802; X.G. He, D. Zhao, L. Li, H.G. Luo, Phys. Rev. E 79 (2009), 056610.

    Google Scholar 

  23. H.J. Shin, J. Phys. A: Math. Theor. 41, 285201 (2008).

    Google Scholar 

  24. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. A 81, 023610 (2010).

    Google Scholar 

  25. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, J. Mod. Opt. 57, 1456 (2010).

    Google Scholar 

  26. T.L. Belyaeva, V.N. Serkin, M.A. Agüero, C. Hernandez-Tenorio, and L.M. Ko-vachev, Int. J. Las. Phys. 21, 258–263 (2011).

    Google Scholar 

  27. A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics, Wiley-VCH VerlagGmbH & Co. KGaA, Weinheim, 2004.

    Google Scholar 

  28. H.H. Chen, Phys. Rev. Lett, 33, 925–928 (1974).

    Google Scholar 

  29. J. Satsuma, N. Yajima, Progr. Theor. Phys. Suppl., 55, 284–296 (1974).

    Google Scholar 

  30. J. Heand Y. Li, Studies in Applied Mathematics, 126, 1 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this paper

Cite this paper

Belyaeva, T.L., Serkin, V.N., Hasegawa, A., He, J., Li, Y. (2012). Generalized Lax Pair Operator Method and Nonautonomous Solitons. In: Ball, J., Curto, R., Grudsky, S., Helton, J., Quiroga-Barranco, R., Vasilevski, N. (eds) Recent Progress in Operator Theory and Its Applications. Operator Theory: Advances and Applications(), vol 220. Springer, Basel. https://doi.org/10.1007/978-3-0348-0346-5_4

Download citation

Publish with us

Policies and ethics