Operator Splitting with Spatial-temporal Discretization

  • András BátkaiEmail author
  • Petra Csomós
  • Bálint Farkas
  • Gregor Nickel
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


Continuing earlier investigations, we analyze the convergence of operator splitting procedures combined with spatial discretization and rational approximations.


Operator splitting spatial-temporal approximation rational approximation A-stable. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector Valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Monographs in Mathematics 96, 2001.Google Scholar
  2. 2.
    A. Bátkai, P. Csomós, G. Nickel, Operator splittings and spatial approximations for evolution equations, J. Evolution Equations 9 (2009), 613-636, DOI 10.1007/s00028-009-0026-6.zbMATHCrossRefGoogle Scholar
  3. 3.
    A. Bátkai, P. Csomós, B. Farkas, G. Nickel, Operator splitting for non-autonomous evolution equations, Journal of Functional Analysis 260 (2011), 2163-2190.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    P. Csomós, G. Nickel, Operator splittings for delay equations, Computers and Mathematics with Applications 55 (2008), 2234-2246.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, Berlin, 2000.zbMATHGoogle Scholar
  6. 6.
    I. Faragó and Á. Havasi, Operator splittings and their applications, Mathematics Research Developments, Nova Science Publishers, New York, 2009.Google Scholar
  7. 7.
    M. Haase, The functional calculus for sectorial operators, Birkhäuser Verlag, Basel, 2006.zbMATHCrossRefGoogle Scholar
  8. 8.
    E. Hairer, Ch. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, Berlin, 2006.zbMATHGoogle Scholar
  9. 9.
    H. Holden, K.H. Karlsen, K.-A. Lie, N.H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions, European Mathematical Society, 2010.Google Scholar
  10. 10.
    W. Hundsdorfer, J. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, Springer Series in Computational Mathematics 33, Springer-Verlag, Berlin, 2003.Google Scholar
  11. 11.
    K. Ito, F. Kappel, Evolution Equations and Approximations, World Scientific, River Edge, N.J., 2002.zbMATHGoogle Scholar
  12. 12.
    K. Ito, F. Kappel, The Trotter-Kato theorem and approximation of PDE's, Mathematics of Computation 67 (1998), 21-44.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • András Bátkai
    • 1
    Email author
  • Petra Csomós
    • 2
  • Bálint Farkas
    • 3
  • Gregor Nickel
    • 4
  1. 1.Institute of MathematicsEötvös Loránd UniversityBudapestHungary
  2. 2.Institut für MathematikLeopold-Franzens-Universität InnsbruckInnsbruckAustria
  3. 3.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  4. 4.FB 6 MathematikUniversität SiegenSiegenGermany

Personalised recommendations