The Dynamical Problem for a Non Self-adjoint Hamiltonian

  • Fabio BagarelloEmail author
  • Miloslav Znojil
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


After a compact overview of the standard mathematical presentations of the formalism of quantum mechanics using the language of C*- algebras and/or the language of Hilbert spaces we turn attention to the possible use of the language of Krein spaces.I n the context of the so-called three-Hilbert-space scenario involving the so-called PT-symmetric or quasi- Hermitian quantum models a few recent results are reviewed from this point of view, with particular focus on the quantum dynamics in the Schrödinger and Heisenberg representations.


Metrics in Hilbert spaces hermitizations of a Hamiltonian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Andrianov, C.M. Bender, H.F. Jones, A. Smilga and M. Znojil, eds., Proceedings of the VIIth Workshop "Quantum Physics with Non-Hermitian Operators", SIGMA 5 (2009), items 001, 005, 007, 017, 018, 039, 043, 047, 053, 064 and 069;Google Scholar
  2. 2.
    F. Bagarello, A. Inoue, C. Trapani, Derivations of quasi *-algebras, lnt. Jour. Math. and Math. Sci., 21 (2004), 1077-1096.MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Bagarello, A. Inoue, C. Trapani, Exponentiating derivations of quasi *-algebras: possible approaches and applications, Int. Jour. Math. and Math. Sci., 17 (2005), 2805-2820.MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Bagarello, Algebras of unbounded operators and physical applications: a survey, Reviews in Math. Phys, 19 (2007), 231-272.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    F. Bagarello, Pseudo-bosons, Riesz bases and coherent states, J. Math. Phys., 50 (2010), 023531, 10 pages.MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Bagarello, Examples of Pseudo-bosons in quantum mechanics, Phys. Lett. A, 374 (2010), 3823-3827.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    F. Bagarello, (Regular) pseudo-bosons versus bosons, J. Phys. A, 44 (2011), 015205.MathSciNetCrossRefGoogle Scholar
  8. 8.
    C.M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 80 (1998), 5243-5246.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    C.M. Bender, Making sense of non-hermitian Hamiltonians. Rep. Prog. Phys. 70 (2007), 947-1018, hep-th/0703096.MathSciNetCrossRefGoogle Scholar
  10. 10.
    O. Bratteli and D.W. Robinson, Operator algebras and Quantum statistical mechanics, vols. 1 and 2, Springer-Verlag, New York, 1987.zbMATHGoogle Scholar
  11. 11.
    V. Buslaev and V. Grechi, Equivalence of unstable inharmonic oscillators and double wells. J. Phys. A: Math. Gen. 26 (1993), 5541-5549.zbMATHCrossRefGoogle Scholar
  12. 12.
    Y.D. Chong, Li Ge, A. Douglas Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106 (2011), 093902.CrossRefGoogle Scholar
  13. 13.
    E.B. Davies, Linear operators and their spectra. Cambridge University Press, 2007.Google Scholar
  14. 14.
    J. Dieudonné, Quasi-Hermitian operators, in Proc. Int. Symp. Lin. Spaces, Perga-mon, Oxford, 1961, pp. 115-122.Google Scholar
  15. 15.
    P. Dorey, C. Dunning and R. Tateo, The ODE/IM correspondence. J. Phys. A: Math. Theor. 40 (2007), R205-R283, hep-th/0703066.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. Fring, H. Jones and M. Znojil, eds., Pseudo-Hermitian Hamiltonians in Quantum Physics VI, Journal of Physics A: Math. Theor. 41 (2008), items 240301-244027.MathSciNetCrossRefGoogle Scholar
  17. 17.
    S.R. Jain and Z. Ahmed, eds., Special Issue on Non-Hermitian Hamiltonians in Quantum Physics, Pramana, Journal of Physics 73 (2009), 215-416 (= part I).Google Scholar
  18. 18.
    S.R. Jain and Z. Ahmed, eds., Special Issue on Non-Hermitian Hamiltonians in Quantum Physics, Pramana, Journal of Physics 73 (2009), 417-626 (= part II).CrossRefGoogle Scholar
  19. 19.
    R. Kretschmer and L. Szymanowski, The Interpretation of Quantum-Mechanical Models with Non-Hermitian Hamiltonians and Real Spectra, arXiv:quant-ph/0105054.Google Scholar
  20. 20.
    R. Kretschmer and L. Szymanowski, Quasi-Hermiticity in infinite-dimensional Hilbert spaces, Phys. Lett. A 325 (2004), 112-115.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    R. Kretschmer and L. Szymanowski, The Hilbert-Space Structure of Non-Hermitian Theories with Real Spectra, Czech. J. Phys. 54 (2004), 71-75.MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Kuru, A. Tegmen, and A. Vercin, Intertwined isospectral potentials in an arbitrary dimension, J. Math. Phys. 42 (2001), 3344-3360.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    S. Kuru, B. Demircioglu, M. Onder, and A. Vercin, Two families of superintegrable and isospectral potentials in two dimensions, J. Math.Phys. 43 (2002), 2133-2150.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    H. Langer, and Ch. Tretter, A Krein space approach to PT symmetry. Czechosl. J. Phys. 70 (2004), 1113-1120.MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Mostafazadeh, Pseudo-Hermitian Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys., 7 (2010), 1191-1306.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    A. Mostafazadeh, Metric Operator in Pseudo-Hermitian Quantum Mechanics and the Imaginary Cubic Potential, J. Phys. A: Math. Theor. 39 (2006), 10171-10188.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    A. Mostafazadeh, Optical Spectral Singularities as Threshold Resonances, Phys.Rev. A 83 (2011), 045801.CrossRefGoogle Scholar
  28. 28.
    K.A. Samani, and M. Zarei, Intertwined Hamiltonians in two-dimensional curved spaces, Ann. of Phys. 316 (2005), 466-482.zbMATHCrossRefGoogle Scholar
  29. 29.
    F.G. Scholtz, H.B. Geyer and F.J.W. Hahne, Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. (NY) 213 (1992), 74-108.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    G.L. Sewell, Quantum Theory of Collective Phenomena, Oxford University Press, Oxford, 1989.Google Scholar
  31. 31.
    P. Siegl, The non-equivalence of pseudo-Hermiticity and presence of antilinear symmetry. PRAMANA-Journal of Physics 73 (2009), 279-287.CrossRefGoogle Scholar
  32. 32.
    W. Thirring, Quantum mathematical physics, Springer-Verlag, Berlin and Heidelberg, 2010.Google Scholar
  33. 33.
    J.P. Williams, Operators Similar to their Adjoints. Proc. Amer. Math. Soc. 20 (1969), 121-123.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    J.-D. Wu and M. Znojil, eds., Pseudo-Hermitian Hamiltonians in Quantum Physics IX, Int. J. Theor. Phys. 50 (2011), special issue Nr. 4, pp. 953-1333.MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Znojil, Three-Hilbert-space formulation of Quantum Mechanics. SYMMETRY, INTEGRABILITY and GEOMETRY: METHODS and APPLICATIONS (SIGMA) 5 (2009), 001, 19 pages.Google Scholar
  36. 36.
    M. Znojil, Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian. J. Math. Phys. 50 (2009), 122105.MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Znojil, On the Role of Normalization Factors and Pseudometric in Crypto-Hermitian Quantum Models. SIGMA 4 (2008), p. 001, 9 pages (arXiv: 0710.4432).MathSciNetGoogle Scholar
  38. 38.
    M. Znojil, Time-dependent version of cryptohermitian quantum theory. Phys. Rev. D 78 (2008), 085003.MathSciNetCrossRefGoogle Scholar
  39. 39.
  40. 40.

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Dieetcam, Facoltà di IngegneriaUniversità di PalermoPalermoItaly
  2. 2.Nuclear Physics Institute ASCRŘežCzech Republic

Personalised recommendations