On the Spectrum of Some Class of Jacobi Operators in a Krein Space

  • I. A. SheipakEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


A Jacobi matrix with exponential growth of its elements and a corresponding symmetric operator are considered.I t is proved that the eigenvalue problem of some self-adjoint extension of the operator in some Hilbert space is equivalent to the eigenvalue problem of a Sturm–Liouville operator with discrete self-similar weight.A n asymptotic formula for the eigenvalues distribution is obtained.T he case of an indefinite metric and self-adjoint extension of the operator in a Krein space is also considered.


Jacobi matrix self-adjoint extension of the symmetric operators eigenvalues asymptotic self-similar function Krein space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Tur Eigenvalue asymptotic for one class of Jacobi matrix with limit point spectra // Matem. zametki, 2003, 74:3, 449-462 (in Russian); English transl.: Mathem. Notes, 2003, 74:3, 425–437.MathSciNetCrossRefGoogle Scholar
  2. 2.
    R.V. Kozhan Asymptotics of the eigenvalues of two-diagonal Jacobi matrices // Matem. zametki, 2005 77:2, p. 313–316 (in Russian); English transl.: Mathem. Notes, 2005 77:2, p. 283–287.MathSciNetCrossRefGoogle Scholar
  3. 3.
    F.R. Gantmakher, M.G. Krein Oscillation matrix and kernels and small vibrations of mechanical systems // GITTL, Moscow, Leningrad, 1950 (in Russian).Google Scholar
  4. 4.
    A.A. Vladimirov, I.A. Sheipak, Self-similar functions in space L2 [0,1] and Sturm-Liouville problem with singular weight, Matem. sbornik, 2006, 197:11, 13–30 (in Russian); English transl.: Sbornik: Mathematics, 2006, 197:11, 1569–1586.MathSciNetCrossRefGoogle Scholar
  5. 5.
    I.A. Sheipak, On the construction and some properties of self-similar functions in the spaces Lp [0,1], 2007, Matem. zametki, 81:6, 924–938 (in Russian); English transl.: Mathem. Notes, 2007, 81:5–6, 827–839.MathSciNetCrossRefGoogle Scholar
  6. 6.
    I.A. Sheipak, Singular Points of a Self-Similar Function of Spectral Order Zero: Self-Similar Stieltjes String, Matem. zametki, 2010, 88:2, 303–316 (in Russian); English transl.: Mathem. Notes, 2010 88:2, 275–286.MathSciNetCrossRefGoogle Scholar
  7. 7.
    A.A. Vladimirov, I.A. Sheipak, Indefinite Sturm-Liouville problem for some classes of self-similar singular weights, Trudy MIRAN, 2006, 255, 88–98 (in Russian); English transl.: Proceedings of the Steklov Institute of Mathematics, 2006, 255, 1–10.MathSciNetGoogle Scholar
  8. 8.
    A.A. Vladimirov, I.A. Sheipak, Eigenvalue asymptotics for Sturm–Liouville problem with discrete self-similar weight // Matem. zametki, 2010, 88:5, 662–672 (in Russian); English transl.: Mathem. Notes, 2010 88:5, 3–12.MathSciNetCrossRefGoogle Scholar
  9. 9.
    N.I. Ahiezer Classic moment problems and some connected calculus problems // Moscow, Fizmatgiz., 1961 (in Russian).Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Moscow Lomonosov State UniversityMoscowRussia

Personalised recommendations