Maximal Semidefinite Invariant Subspaces for J-dissipative Operators

  • S. G. PyatkovEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


We describe some sufficient conditions for a J-dissipative operator in a Krein space to have maximal semidefinite invariant subspaces.T he semigroup properties of the restrictions of an operator to these subspaces are studied.Appl ications are given to the case when an operator admits matrix representation with respect to the canonical decomposition of the space and to some singular differential operators.T he main conditions are given in the terms of the interpolation theory of Banach spaces.


Dissipative operator Pontryagin space Krein space invariant subspace analytic semigroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pontryagin, L.S. Hermitian operators in spaces with indefinite metric. Izv. Akad. Nauk SSSR, Ser. Mat. 8, 243-280 (1944).zbMATHGoogle Scholar
  2. 2.
    Krein, M.G. On an application of the fixed point principle in the theory of linear transformations of spaces with an indefinite metric. Uspekhi Mat. Nauk. 50,no. 2(36), 180-190 (1950).Google Scholar
  3. 3.
    Krein, M.G. A new application of the fixed-point principle in the theory of operators in a space with indefinite metric. Dokl. Akad. Nauk SSSR. 154, no. 5, 1023-1026 (1964).MathSciNetGoogle Scholar
  4. 4.
    Krein, M.G. and Langer, G.K. The defect subspaces and generalized resolvents of a Hermitian operator in the space ΠK.Functional Anal. Appl. 5, no. 2, 126-146; no. 3, 217-228 (1971).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Langer, G.K. On J-Hermitian operators. Dokl. Akad. Nauk SSSR 134, no. 2, 263-266 (1960).MathSciNetGoogle Scholar
  6. 6.
    Langer, H. Eine Verallgemeinerung eines Satzes von L.S. Pontrjagin. Math. Ann. 152, no. 5, 434-436 (1963).zbMATHCrossRefGoogle Scholar
  7. 7.
    Langer, H. Invariant subspaces for a class of operators in spaces with indefinite metric. J. Funct. Anal. 19, no. 3, 232-241 (1975).zbMATHCrossRefGoogle Scholar
  8. 8.
    Azizov, T.Ya. and Iokhvidov, I.S. Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric (in Russian). Nauka, Moscow (1986).Google Scholar
  9. 9.
    Azizov, T.Ya. Invariant subspaces and criteria for the completeness of the system of root vectors of J-dissipative operators in the Pontrjagin space. Soviet Math. Dokl. 200, no. 5, 1513-1516 (1971).MathSciNetGoogle Scholar
  10. 10.
    Azizov, T.Ya. Dissipative operators in a Hilbert space with indefinite metric. Izv. Akad. Nauk SSSR, Ser. Mat. 37, no. 3, 639-662 (1973).MathSciNetGoogle Scholar
  11. 11.
    Azizov, T.Ya. and Khatskevich, V.A. A theorem on existence of invariant subspaces for J-binoncontractive operators. Recent Advances in Operator Theory in Hilbert and Krein Spaces. Birkhäuser Verlag, Basel-Boston-Berlin, 41-49 (2009).Google Scholar
  12. 12.
    Azizov, T.Ya. and Gridneva, I.V. On invariant subspaces of J-dissipative operators. Ukrainian Math. Bulletin. 6, no. 1, 1-13 (2009).MathSciNetGoogle Scholar
  13. 13.
    Shkalikov, A.A. On invariant subspaces of dissipative operators in a space with an indefinite metric. Proc. Steklov Inst. Math. 248, no. 1, 287-296 (2005).MathSciNetGoogle Scholar
  14. 14.
    Shkalikov, A.A. Dissipative Operators in the Krein Space. Invariant Subspaces and Properties of Restrictions. Functional Analysis and Its Applications. 41, no. 2, 154-167 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Haase, M. The Functional Calculus for Sectorial Operators. Operator Theory: Adv. and Appl. 169, Birkhäuser Verlag, Basel-Boston-Berlin (2006).CrossRefGoogle Scholar
  16. 16.
    Pyatkov, S.G. Maximal semidefinite invariant subspaces for some classes of operators. Conditionally Well-Posed Problems. TVP/TSP, Utrecht, 336-338 (1993).Google Scholar
  17. 17.
    Pyatkov, S.G. On existence of maximal semidefinite invariant subspaces for J-dissipative operators (2010).
  18. 18.
    Pyatkov S.G. Some properties of eigenfunctions and associated functions of indefinite Sturm-Liouville problems. In book: Nonclassical Equations of Mathematical Physics. Novosibirsk. Sobolev Institute of Mathematics, pp. 240-251 (2005).Google Scholar
  19. 19.
    Pyatkov S.G. Riesz completeness of the eigenelements and associated elements of linear selfadjont pencils. Russian Acad. Sci. Sb. Math. 81, no. 2, pp. 343-361 (1995).MathSciNetGoogle Scholar
  20. 20.
    Egorov, I.E., Pyatkov, S.G., and Popov, S.V. Nonclassical Operator-Differential Equations. Nauka, Novosibirsk (2000).Google Scholar
  21. 21.
    Pyatkov, S.G. Operator theory. Nonclassical problems. VSP, Utrecht (2002).zbMATHGoogle Scholar
  22. 22.
    Grisvard, P. Commutative de deux foncteurs d’interpolation et applications. J. Math. Pures et Appliq. 45, no. 2, 143-206 (1966).MathSciNetzbMATHGoogle Scholar
  23. 23.
    Triebel, H. Interpolation Theory, Function spaces, Differential operators. VEB Deutscher Verlag Wiss., Berlin (1977).Google Scholar
  24. 24.
    Ausher, P., McIntosh, A., and Nahmod, A. Holomorphic functional calculi of operators, quadratic estimates and interpolation. Ind. Univ. Math. J. 46, no. 2, 375-403 (1997).Google Scholar
  25. 25.
    Grisvard, P. An approach to the singular solutions of elliptic problems via the theory of differential equations in Banach Spaces. Differential Equations in Banach Spaces. Lect. Notes Math. 1223, 131-156 (1986).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Engel, K.-J. and Nagel, R. One-Parameter Semigroups for Linear Evolution Equations. Springer. Graduate Texts in Mathematics. 194, Berlin (2000).Google Scholar
  27. 27.
    Fleige, A. and Najman, B. Nonsingularity of critical points of some differential and difference operators, Operators Theory: Adv. and Appl., 106, 147-155 (1998).MathSciNetGoogle Scholar
  28. 28.
    Langer H. Spectral function of definitizable operators in Krein spaces. In: Functional Analysis. Proceedings (Dubrovnik 1981), Lect. Notes Math., 948, 1-46 (1982).CrossRefGoogle Scholar
  29. 29.
    Faddeev, M.M. and Shterenberg, R.G. On the Similarity of Some Differential Operators to Self-Adjoint Ones. Math. Notes, 72, no. 2, 261-270 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Faddeev, M.M. and Shterenberg, R.G. Similarity of Some singular operators to self-adjoint ones. J. of Math. Sci., 115, no. 2, 2279-2286 (2003).MathSciNetCrossRefGoogle Scholar
  31. 31.
    Karabash, I.M. On J-self-adjoint differential operators similar to self-adjoint operators. Mat. Zametki [Math. Notes], 68, no. 6, 943-944 (2000).MathSciNetCrossRefGoogle Scholar
  32. 32.
    Karabash, I. and Kostenko, A. Spectral Analysis of Differential Operators with Indefinite Weights and a Local Point Interaction. Operator Theory: Advances and Applications, 175, 169-191 (2007).MathSciNetCrossRefGoogle Scholar
  33. 33.
    Karabash, I.M., Kostenko, A.S. On the Similarity of a J-Nonnegative Sturm-Liouville Operator to a Self-Adjoint Operator. Functional Analysis and Its Applications, 43,no. 1, pp. 65-68 (2009).MathSciNetCrossRefGoogle Scholar
  34. 34.
    Karabash, I.M. Abstract Kinetic Equations with Positive Collision Operators. Spectral Theory in Inner Product Spaces and Applications. Operator Theory: Advances and Applications, 188, 175-196 (2008).MathSciNetGoogle Scholar
  35. 35.
    Curgus, B. and Najman, B. The operator $$-({{\rm sgn}} \,x)\frac{{{d^2}}}{{d{x^2}}}$$ is similar to selfadjoint operator in L2(R). Proc. Amer. Math. Soc. 123, 1125-1128 (1995).MathSciNetzbMATHGoogle Scholar
  36. 36.
    Weis, L. H holomorphic functional calculus for sectorial operators – a survey. Operator Theory: Advances and Applications, 168, 263-294 (2006).MathSciNetCrossRefGoogle Scholar
  37. 37.
    Parfenov, A.I. On an embedding criterion of interpolation spaces and its application to indefinite spectral problems. Sib. Math. J., 44, no. 4, pp. 638-644 (2003).MathSciNetCrossRefGoogle Scholar
  38. 38.
    Parfenov, A.I., On the Curgus condition in indefinite Sturm-Liouville problems. Sib.Adv. Math. 15, no. 2, pp. 68-103 (2005).MathSciNetGoogle Scholar
  39. 39.
    39 Parfenov A.I., A contracting operator and boundary values. Novosibirsk, Sobolev Institute of Math., Omega Print, preprint no. 155 (2005).Google Scholar
  40. 40.
    Karabash, I.M., Malamud M.M. Indefinite Sturm-Liouville operators sgn $${x}(- \frac{{{d^2}}}{{d{x^2}}} + q(x))$$ with finite zone potentials. Operators and Matrices, 1, no. 3, pp. 301-368 (2007).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Yugra State UniversityHanty-MansiiskRussia

Personalised recommendations