Note on Characterizations of the Harmonic Bergman Space

  • Kyesook NamEmail author
  • Kyunguk Na
  • Eun Sun Choi
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


In this paper, we solve the problem which was stated in [6].A ctually we obtain a characterization of harmonic Bergman space in terms of Lipschitz type condition with pseudo-hyperbolic metric on the unit ball in R n.


Harmonic Bergman space hyperbolic metric Lipschitz condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, New York, 1992.zbMATHGoogle Scholar
  2. 2.
    B.R. Choe, H. Koo and Y.J. Lee, Positive Schatten(-Herz) class Toeplitz operators on the ball, Studia Math, 189 (2008), No. 1, 65-90.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    B.R. Choe and Y.J. Lee, Note on atomic decompositions of harmonic Bergman functions, Proceedings of the 15th ICFIDCAA; Complex Analysis and its Applications, Osaka Municipal Universities Press, OCAMI Studies Series 2 (2007), 11-24.MathSciNetGoogle Scholar
  4. 4.
    E.S. Choi and K. Na, Characterizations of the harmonic Bergman space on the ball, J. Math. Anal. Appl. 353 (2009), 375-385.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    B.R. Choe, H. Koo and H. Yi, Derivatives of harmonic Bergman and Bloch functions on the ball, J. Math. Anal. Appl. 260 (2001), 100-123.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    K. Nam, K. Na and E.S. Choi, Corrigendum of "Characterizations of the harmonic Bergman space on the ball" [J. Math. Anal. Appl. 353 (2009), 375-385], in press.MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, to appear in Canadian Math. Bull.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of Mathematical Sciences BK21-Mathematical Sciences DivisionSeoul National UniversitySeoulRepublic of Korea
  2. 2.General Education, MathematicsHanshin UniversityOsanRepublic of Korea
  3. 3.Department of MathematicsKorea UniversitySeoulRepublic of Korea

Personalised recommendations