Advertisement

Smoothness of Hill’s Potential and Lengths of Spectral Gaps

  • Vladimir MikhailetsEmail author
  • Volodymyr Molyboga
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)

Abstract

The paper studies the Hill–Schrödinger operators with potentials in the space \({H^\omega}\subset{L^2}(\mathbb{T},\mathbb{R}).\) Explicit description for the classes of sequences being the lengths of spectral gaps of these operators is found. The functions ω may be nonmonotonic. The space \({H^\omega}\) coincides with the Hörmander space \({H^\omega_2}(\mathbb{T},\mathbb{R}), \) with the weight function \(\omega(\sqrt{1+\xi^2})\) if ω is in Avakumovich’s class OR.

Keywords

Hill–Schrödinger operators spectral gaps Hörmander spaces. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bingham, C. Goldie, J. Teugels, Regular Variation. Encyclopedia of Math. and its Appl., vol. 27, Cambridge University Press, Cambridge, etc., 1989.Google Scholar
  2. 2.
    P. Djakov, B. Mityagin, Instability zones of one-dimentional periodic Schrödinger and Dirac operators. Uspekhi Mat. Nauk 61 (2006), no. 4, 77-182. (Russian); English Transl. in Russian Math. Surveys 61 (2006), no. 4, 663-766.MathSciNetGoogle Scholar
  3. 3.
    P. Djakov, B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular-potentials. Dynamics of PDE 6 (2009), no. 2, 95-165.MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. Garnett, E. Trubowitz, Gaps and bands of one-dimensional periodic Schrödinger operators. Comm. Math. Helv., 59 (1984), 258-312.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    H. Hochstadt, Estimates of the stability intervals for Hill’s equation. Proc. Amer. Math. Soc. 14 (1963), 930-932.MathSciNetzbMATHGoogle Scholar
  6. 6.
    H. Hochstadt, On the determination of Hill’s equation from its spectrum.Arch. Rat. Mech. Anal. 19 (1965), 353-362.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin, 1963.zbMATHCrossRefGoogle Scholar
  8. 8.
    T. Kappeler, B. Mityagin, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator. SIAM J. Math. Anal. 33 (2001), no. 1, 113-152.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    T. Kappeler, C. Möhr, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials. J. Funct. Anal. 186 (2001), 62-91.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    E. Korotyaev, Inverse problem and the trace formula for the Hill operator.II. Math. Z. 231 (1999), no. 2, 345-368.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions. Int. Math. Res. Not. 37 (2003), no. 2, 2019-2031.MathSciNetCrossRefGoogle Scholar
  12. 12.
    H. McKean, E. Trubowitz, Hill’s operators and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math. 29 (1976), no. 2, 143-226.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    V. Marchenko, Sturm-Liouville Operators and Applications. Birkhäuser Verlag, Basel, 1986. (Russian edition: Naukova Dumka, Kiev, 1977)zbMATHGoogle Scholar
  14. 14.
    V. Marchenko, I. Ostrovskii, A characterization of the spectrum of Hill’s operator. Matem. Sbornik 97 (1975), no. 4, 540-606. (Russian); English Transl. in Math. USSR-Sb. 26 (1975), no. 4, 493-554.Google Scholar
  15. 15.
    V. Mikhailets, V. Molyboga, Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials. Methods Funct. Anal. Topology 15 (2009), no. 1, 31-40.MathSciNetzbMATHGoogle Scholar
  16. 16.
    V. Mikhailets, V. Molyboga, Hill’s potentials in Hörmander spaces and their spectral gaps. Methods Funct. Anal. Topology 17 (2011), no. 3, 235-243.MathSciNetzbMATHGoogle Scholar
  17. 17.
    C. Möhr, Schrödinger Operators with Singular Potentials on the Circle: Spectral Analysis and Applications. Thesis at the University of Zurich, 2001, 134 p.Google Scholar
  18. 18.
    V. Mikhailets, A. Murach, Interpolation with a function parameter and refined scale of spaces. Methods Funct. Anal. Topology 14 (2008), no. 1, 81-100.MathSciNetzbMATHGoogle Scholar
  19. 19.
    V. Mikhailets, A. Murach, On the elliptic operators on a closed compact manifold. Reports of NAS of Ukraine (2009), no. 3, 29-35. (Russian)MathSciNetGoogle Scholar
  20. 20.
    V. Mikhailets, A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems. Institute of Mathematics of NAS of Ukraine, Kyiv, 2010. (Russian).Google Scholar
  21. 21.
    J. Pöschel, Hill’s potentials in weighted Sobolev spaces and their spectral gaps. In:W. Craig (ed), Hamiltonian Systems and Applications, Springer, 2008, 421-430.Google Scholar
  22. 22.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics: Vols 1-4. Academic Press, New York, etc., 1972-1978, V. 4: Analysis of Operators. 1972.Google Scholar
  23. 23.
    E. Trubowitz, The inverse problem for periodic potentials. Comm. Pure Appl. Math. 30 (1977), 321-337.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Institute of MathematicsNational Academy of Science of UkraineKyiv-4Ukraine

Personalised recommendations