Advertisement

Decay Estimates for Fourier Transforms of Densities Defined on Surfaces with Biplanar Singularities

  • Otto LiessEmail author
  • Claudio Melotti
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)

Abstract

In this note we describe results on decay estimates for Fourier transforms of densities which live on surfaces S in three space dimensions with isolated biplanar singularities and we also describe briefly how such results are related to the theory of crystal elasticity for tetragonal crystals.

Keywords

Decay estimates crystal acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bannini, O. Liess: Estimates for Fourier transforms of surface carried densities on surfaces with singular points. II. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52, No. 2, (2006), 211–232.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    G.F.D. Duff: The Cauchy problem for elastic waves in an anisotropic medium, Phil. Transactions Royal Soc. London, Ser. A Nr. 1010, Vol. 252, (1960), 249–273.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    S. Klainerman: Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33 (1980), 43–101.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    S. Klainerman, G. Ponce: Global, small amplitude solutions to nonlinear evolution equations. Commun. Pure Appl. Math. 36, 133–141 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    O. Liess: Conical refraction and higher microlocalization. Springer Lecture Notes in Mathematics, vol. 1555, (1993).Google Scholar
  6. 6.
    O. Liess: Curvature properties of the slowness surface of the system of crystal acoustics for cubic crystals. Osaka J. Math., vol. 45 (2008), 173–210.MathSciNetzbMATHGoogle Scholar
  7. 7.
    O. Liess: Decay estimates for the solutions of the system of crystal acoustics for cubic crystals. Asympt. Anal. 64 (2009), 1–27.MathSciNetzbMATHGoogle Scholar
  8. 8.
    C. Melotti: Ph D thesis at Bologna University. In preparation.Google Scholar
  9. 9.
    M.J.P. Musgrave, Crystal acoustics, Holden and Day, San Francisco 1979.Google Scholar
  10. 10.
    R. Racke, Lectures on nonlinear evolution equations: initial value problems, Vieweg Verlag, Wiesbaden, Aspects of mathematics, E 19, 1992.Google Scholar
  11. 11.
    T.C. Sideris, The null condition and global existence of nonlinear elastic waves. In-vent. Math. 123, No. 2, 323–342 (1996).MathSciNetzbMATHGoogle Scholar
  12. 12.
    E.M. Stein: Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993.zbMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsBologna UniversityBolognaItaly

Personalised recommendations