Advertisement

Compactness of the \(\bar{\partial}\)-Neumann Operator on Weighted (0, q)-forms

  • Friedrich HaslingerEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)

Abstract

As an application of a characterization of compactness of the \(\bar{\partial}\)-Neumann operator we derive a sufficient condition for compactness of the \(\bar{\partial}\)-Neumann operator on (0, q)-forms in weighted L 2-spaces on ℂn.

Keywords

\(\bar{\partial}\)-Neumann problem Sobolev spaces compactness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Adams and J.J.F. Fournier, Sobolev spaces. Pure and Applied Math. Vol. 140, Academic Press, 2006.Google Scholar
  2. 2.
    B. Berndtsson,.\(\bar{\partial}\). and Schrödinger operators. Math. Z. 221 (1996), 401–413.MathSciNetzbMATHGoogle Scholar
  3. 3.
    P. Bolley, M. Dauge and B. Helffer, Conditions suffisantes pour l’injection compacte d’espace de Sobolev à poids. Séminaire équation aux dérivées partielles (France), Université de Nantes 1 (1989), 1–14.Google Scholar
  4. 4.
    So-Chin Chen and Mei-Chi Shaw, Partial differential equations in several complex variables. Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc., 2001.Google Scholar
  5. 5.
    M. Christ, On the \(\bar{\partial}\) equation in weighted L2 norms in C1. J. of Geometric Analysis 1 (1991), 193–230.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Christ and S. Fu, Compactness in the \(\bar{\partial}\)-Neumann problem, magnetic Schrödinger operators, and the Aharonov-Bohm effect. Adv. Math. 197 (2005), 1–40.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    G.B. Folland, Introduction to partial differential equations. Princeton University Press, Princeton, 1995.zbMATHGoogle Scholar
  8. 8.
    S. Fu and E.J. Straube, Semi-classical analysis of Schrödinger operators and compactness in the \(\bar{\partial}\) Neumann problem. J. Math. Anal. Appl. 271 (2002), 267–282.MathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Gansberger, Compactness of the \(\bar{\partial}\)-Neumann operator. Dissertation, University of Vienna, 2009.Google Scholar
  10. 10.
    K. Gansberger and F. Haslinger, Compactness estimates for the \(\bar{\partial}\)-Neumann problem in weighted L2 - spaces. Complex Analysis (P. Ebenfelt, N. Hungerbühler, J.J. Kohn, N. Mok, E.J. Straube, eds.), Trends in Mathematics, Birkhäuser (2010), 159–174.Google Scholar
  11. 11.
    F. Haslinger, Compactness for the \(\bar{\partial}\)-Neumann problem – a functional analysis approach. Collectanea Mathematica 62 (2011), 121–129.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    F. Haslinger and B. Helffer, Compactness of the solution operator to \(\bar{\partial}\) in weighted L2-spaces. J. of Functional Analysis 255 (2008), 13–24.zbMATHCrossRefGoogle Scholar
  13. 13.
    L. Hörmander, An introduction to complex analysis in several variables. North-Holland, 1990.Google Scholar
  14. 14.
    J. Johnsen, On the spectral properties of Witten Laplacians, their range projections and Brascamp-Lieb’s inequality. Integral Equations Operator Theory 36 (2000), 288–324.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J.-M. Kneib and F. Mignot, Equation de Schmoluchowski généralisée. Ann. Math. Pura Appl. (IV) 167 (1994), 257–298.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    J.D. McNeal, L2 estimates on twisted Cauchy-Riemann complexes. 150 years of mathematics at Washington University in St. Louis. Sesquicentennial of mathematics at Washington University, St. Louis, MO, USA, October 3–5, 2003. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 395 (2006), 83–103.Google Scholar
  17. 17.
    G. Schneider, Non-compactness of the solution operator to \(\bar{\partial}\) on the Fock-space in several dimensions. Math. Nachr. 278 (2005), 312–317.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    E. Straube, The L2 -Sobolev theory of the \(\bar{\partial}\)-Neumann problem. ESI Lectures in Mathematics and Physics, EMS, 2010.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität WienWienAustria

Personalised recommendations