Transfer Functions for Pairs of Wandering Subspaces

  • Rolf GohmEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


To a pair of subspaces wandering with respect to a row isometry we associate a transfer function which in general is multi-Toeplitz and in interesting special cases is multi-analytic.Th en we describe in an expository way how characteristic functions from operator theory as well as transfer functions from noncommutative Markov chains fit into this scheme.


Row isometry multi-Toeplitz multi-analytic wandering subspace transfer function characteristic function noncommutative Markov chain. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ball, C. Sadosky, V. Vinnikov, Scattering Systems with Several Evolutions and Multidimensional Input/State/Output Systems. Integral Equations and Operator Theory 52 (2005), 323–393.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Ball, V. Vinnikov, Functional Models for Representations of the Cuntz Algebra. In: Operator Theory, System Theory and Scattering Theory: Multidimensional Generalizations. Operator Theory, Advances and Applications, vol. 157, Birkhauser, 2005, 1–60.Google Scholar
  3. 3.
    J. Ball, V. Vinnikov, Lax-Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional Setting. Memoirs of the AMS, vol. 178, no. 837 (2005).Google Scholar
  4. 4.
    S. Dey, R. Gohm, Characteristic Functions of Liftings. Journal of Operator Theory 65 (2011), 17–45.MathSciNetzbMATHGoogle Scholar
  5. 5.
    C. Foias, A.E. Frazho, The Commutant Lifting Approach to Interpolation Problems. Operator Theory, Advances and Applications, vol. 44, Birkhäuser, 1990.Google Scholar
  6. 6.
    R. Gohm, Noncommutative Markov Chains and Multi-Analytic Operators. J. Math. Anal. Appl., vol. 364(1) (2009), 275–288.MathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Kümmerer, H. Maassen, A Scattering Theory for Markov Chains. Inf. Dim. Analysis, Quantum Prob. and Related Topics, vol.3 (2000), 161–176.zbMATHCrossRefGoogle Scholar
  8. 8.
    G. Popescu, Isometric Dilations for Infinite Sequences of Noncommuting Operators. Trans. Amer. Math. Soc. 316 (1989), 523–536.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    G. Popescu, Characteristic Functions for Infinite Sequences of Noncommuting Operators. J. Operator Theory 22 (1989), 51–71.MathSciNetzbMATHGoogle Scholar
  10. 10.
    G. Popescu, Multi-Analytic Operators on Fock Spaces. Math. Ann. 303 (1995), no. 1, 31–46.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    G. Popescu, Structure and Entropy for Toeplitz Kernels. C.R. Acad. Sci. Paris Ser. I Math. 329 (1999), 129–134.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Rosenblum, J. Rovnyak, Hardy Classes and Operator Theory. Oxford University Press, 1995.Google Scholar
  13. 13.
    B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators. North-Holland, 1970.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Institute of Mathematics and PhysicsAberystwyth UniversityAberystwythUK

Personalised recommendations