Maximal Lp-regularity for a 2D Fluid-Solid Interaction Problem

  • Karoline GötzeEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


We study a coupled system of equations which appears as a suitable linearization of the model for the free motion of a rigid body in a Newtonian fluid in two space dimensions.F or this problem, we show maximal L p-regularity estimates.T he method rests on a suitable reformulation of the problem as the question of invertibility of a bounded operator on W 1, p(0, T;;ℝ3).


Rigid body in a fluid maximal regularity Stokes equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, Birkhäuser, 1995.Google Scholar
  2. 2.
    H. Amann, On the Strong Solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2 (2000), 16-98.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M.E. Bogovskii, Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248 (1979), 1037-1040.MathSciNetGoogle Scholar
  4. 4.
    C. Conca, J. San Martin, and M. Tucsnak, Existence of solutions for the equations modeling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations 25 (2000) 1019-1042.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    R. Denk, J. Saal, and J. Seiler, Inhomogeneous symbols, the Newton polygon, and maximal LP-regularity. Russ. J. Math. Phys. 15 (2008), 171-191.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    E. Dintelmann, Fluids in the exterior domain of several moving obstacles. PhD thesis, Technische Universitat Darmstadt, 2007.zbMATHGoogle Scholar
  7. 7.
    E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003), 281-308.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    G.P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of mathematical fluid dynamics, Vol. I, North-Holland, 2002, 653-791.Google Scholar
  9. 9.
    G.P. Galdi and A.L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. Nonlinear Problems in Mathematical Physics and Related Topics I, Kluwer Academic/Plenum Publishers, 2002, 121-144.Google Scholar
  10. 10.
    M. Geißert, K. Götze, and M. Hieber, Lp-theory for strong solutions to fluid rigid-body interaction in Newtonian and generalized Newtonian fluids. Trans. Amer. Math. Soc., to appear.Google Scholar
  11. 11.
    M. Geißert, H. Heck, M. Hieber, and O. Sawada, Weak Neumann implies Stokes.J. Reine Angew. Math., to appear.Google Scholar
  12. 12.
    Y. Giga and H. Sohr, Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991), 72-94.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Noll and J. Saal, He-calculus for the Stokes operator on Lq-spaces. Math. Z. 244 (2003), 651-688.MathSciNetzbMATHGoogle Scholar
  14. 14.
    V.A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations. J. Sov. Math. 8 (1977), 467-529.zbMATHCrossRefGoogle Scholar
  15. 15.
    T. Takahashi. Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003), 1499-1532.MathSciNetzbMATHGoogle Scholar
  16. 16.
    H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. Johann Ambrosius Barth, 1995.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany

Personalised recommendations