Advertisement

An Invitation to the S-functional Calculus

  • Fabrizio ColomboEmail author
  • Irene Sabadini
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)

Abstract

In this paper we give an overview of the S-functional calculus which is based on the Cauchy formula for slice monogenic functions.S uch a functional calculus works for n-tuples of noncommuting operators and it is based on the notion of S-spectrum.Th ere is a commutative version of the S-functional calculus, due to the fact that the Cauchy formula for slice monogenic functions admits two representations of the Cauchy kernel.W e will call SC-functional calculus the commutative version of the S-functional calculus. This version has the advantage that it is based on the notion of ℱ-spectrum, which turns out to be more simple to compute with respect to the S-spectrum. For commuting operators the two spectra are equal, but when the operators do not commute among themselves the ℱ-spectrum is not well defined.W e finally briefly introduce the main ideas on which the ℱ-functional calculus is inspired.T his functional calculus is based on the integral version of the Fueter-Sce mapping theorem and on the ℱ-spectrum.

Keywords

Functional calculus for n-tuples of commuting operators the S-spectrum the ℱ-spectrum S-functional calculus S-functional calculus SC-functional calculus ℱ-functional spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Res. Notes in Math., 76, 1982.Google Scholar
  2. 2.
    F. Colombo, I. Sabadini, A structure formula for slice monogenic functions and some of its consequences, Hypercomplex Analysis, Trends in Mathematics, Birkäuser, 2009, 69-99.Google Scholar
  3. 3.
    F. Colombo, I. Sabadini, The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators, J. Math. Anal. Appl., 373 (2011), 655-679.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    F. Colombo, I. Sabadini, On some proper-ties of the quaternionic functional calculus, J. Geom. Anal., 19 (2009), 601-627.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    F. Colombo, I. Sabadini, On the formulations ofthe quaternionic functional calculus, J. Geom. Phys., 60 (2010), 1490-1508.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    F. Colombo, I. Sabadini, Some remarks on the S-spectrum, to appear in Complex Var. Elliptic Equ., (2011).Google Scholar
  7. 7.
    F. Colombo, I. Sabadini, The F-spectrum and the SC-functional calculus, to appear in Proceedings of the Royal Society of Edinburgh, Section A.Google Scholar
  8. 8.
    F. Colombo, I. Sabadini, Bounded perturbations of the resolvent operators associated to the F-spectrum, Hypercomplex Analysis and its applications, Trends in Mathematics, Birkhäuser, (2010), 13-28.Google Scholar
  9. 9.
    F. Colombo, I. Sabadini, F. Sommen, The Fueter mapping theorem in integral form and the F-functional calculus, Math. Meth. Appl. Sci., 33 (2010), 2050-2066.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004.CrossRefGoogle Scholar
  11. 11.
    F. Colombo, I. Sabadini, D.C. Struppa, Slice monogenic functions, Israel J. Math., 171 (2009), 385-403.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    F. Colombo, I. Sabadini, D.C. Struppa, Extension properties for slice monogenic functions, Israel J. Math., 177 (2010), 369-389.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    F. Colombo, I. Sabadini, D.C. Struppa, The Pompeiu formula for slice hyperholo-morphic functions, Michigan Math. J., 60 (2011), 163-170.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    F. Colombo, I. Sabadini, D.C. Struppa, A new functional calculus for noncommuting operators, J. Funct. Anal., 254 (2008), 2255-2274.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    F. Colombo, I. Sabadini, D.C. Struppa, Duality theorems for slice hyperholomorphic functions, J. Reine Angew. Math., 645 (2010), 85-104.MathSciNetzbMATHGoogle Scholar
  16. 16.
    F. Colombo, I. Sabadini, D.C. Struppa, The Runge theorem for slice hyperholomor-phic functions, Proc. Amer. Math. Soc., 139 (2011), 1787-1803.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    F. Colombo, I. Sabadini, D.C. Struppa, Noncommutative functional calculus. Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics, Vol. 289, Birkhauser, 2011, VI, 222 p.Google Scholar
  18. 18.
    N. Dunford, J. Schwartz, Linear operators, part I: general theory, J. Wiley and Sons (1988).Google Scholar
  19. 19.
    G. Gentili, D.C. Struppa, A new approach to Cullen-regular functions of a quater-nionic variable, C. R. Math. Acad. Sci. Paris, 342 (2006), 741-744.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    B. Jefferies, Spectral properties of noncommuting operators, Lecture Notes in Mathematics, 1843, Springer-Verlag, Berlin, 2004.Google Scholar
  21. 21.
    W. Rudin, Functional Analysis, Functional analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations