Algebraic Reflexivity and Local Linear Dependence: Generic Aspects

  • Nir CohenEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 221)


Both reflexivity and the LLD (local linear dependence) property for a space of linear operators are defined in terms of (“local”) one-sided action on vectors.W e survey the main developments concerning these two areas during the last decade, and observe a major difference between them.Whe reas the LLD property is verified on generic sets of (so-called separating) vectors, reflexivity must be tested on the entire vector space.W e duly introduce a modified notion of reflexivity (generic reflexivity) which is verified on generic sets of vectors, study its properties, and show that it is closer in spirit to LLD than the usual notion of reflexivity. In passing, we simplify and complete some recent results on LLD spaces of low dimension, in the special case of matrix spaces.W e answer an open problem on matrix pairs (A,B) for which AB belongs to the reflexive hull of B and B.Our approach is based on determinant-based genericity constructions and the Kronecker-Weierstrass canonical form. The study of reflexivity and the LLD property is restricted to operator spaces of very low dimension.W e provide basic partial results which apply also in arbitrary dimension.


Local linear independence reflexivity separating vector genericity singular matrix space matrix pencil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Azoff On finite rank operators and preannihilators. Mem. Amer. Math Soc. 64 (1986) 357.MathSciNetGoogle Scholar
  2. 2.
    S.A. Amitsur, Generalized polynomial identities and pivotal monomials. Trans. Amer. Math. Soc. 114 (1965) 210-226.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    B. Aupetit, A primer on spectral theory. Springer 1991.Google Scholar
  4. 4.
    J. Bračič, B. Kuzma, Reflexive defect of spaces of linear operators. Lin. Algebra Appl. 430 (2009) 344-359.zbMATHCrossRefGoogle Scholar
  5. 5.
    M. Brešar, P. Šemrl, On locally linearly dependent operators and derivations. Trans. Amer. Math. Soc. 351.3 (1999) 1257-1275.Google Scholar
  6. 6.
    M. Chebotar, W.-F. Ke, P.-H. Lee, On a Brešar-Šemrl conjecture and derivations of Banach algebras. Quart. J. Math. 57 (2006) 469-478.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Chebotar, P. Šemrl, Minimal locally linearly dependent spaces of operators. Lin. Algebra Appl. 429 (2008) 887-900.zbMATHCrossRefGoogle Scholar
  8. 8.
    J.A. Deddens, P.A. Fillmore, Reflexive linear transformations. Lin. Algebra Appl. 10 (1975) 89-93.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    H. Derksen, J. Weyman, Quiver representations. Notices Amer. Math. Soc. 52.2 (2005) 200-206.MathSciNetGoogle Scholar
  10. 10.
    L. Ding, An algebraic reflexivity result. Houston J. Math 9 (1993) 533-540.Google Scholar
  11. 11.
    L. Ding, On a pattern of reflexive spaces. Proc. AMS 124.10 (1996) 3101-3108.CrossRefGoogle Scholar
  12. 12.
    L. Ding, Separating vectors and reflexivity. Linear Algebra Appl. 174 (1992) 37-52.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    P.F. Fillmore, C. Laurie, H. Radjavi, On matrix spaces with zero determinant. Linear Multilin. Algebra 18 (1985) 255-266.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    F.R. Gantmacher, Theory of matrices I-II. Chelsea 1959.Google Scholar
  15. 15.
    W. Gong, D.R. Larson, W.R. Wogen, Two results on separating vectors. Indiana J. Math 43.3 (1994) 1159-1165.MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Hadwin, Algebraically reflexive linear transformations. Linear Multilinear Alg. 14 (1983) 225-233.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    D. Hadwin, A general view of reflexivity. Trans.AMS 344 (1994) 325-360.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    R.E. Hartwig, P. Šemrl and H.J. Werner, Problem 19-3, Open problem section, Image (the ILAS bulletin) 19 (1997) 32.Google Scholar
  19. 19.
    R.E. Hartwig, P. Šemrl and H.J. Werner, Solution to Problem 19-3, Open problem section, Image (the ILAS bulletin) 22 (1999) 25.Google Scholar
  20. 20.
    J. Ja’Ja’, An addendum to Kronecker’s theory of pencils. SIAM Appl. Math 37.3 (1979) 700-712.MathSciNetGoogle Scholar
  21. 21.
    I. Kaplansky, Infinite Abelian Groups. Ann Arbor, 1954.Google Scholar
  22. 22.
    D.R. Larson, Reflexivity, algebraic reflexivity and linear interpolation. Amer. J. Math 110 (1988) 283-299.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    D. Larson, W. Wogen, Reflexivity proper-ties of T© 0. Journal of Functional Analysis 92 (1990) 448-467.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    J. Li, Z. Pan, Algebraic reflexivity of linear transformations. Proc. AMS 135 (2007) 1695-1699.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    R. Meshulam, P. Šemrl, Locally linearly dependent operators. Pacific J. Math 203.2 (2002) 441-459.CrossRefGoogle Scholar
  26. 26.
    R. Meshulam, P. Šemrl, Locally linearly dependent operators and reflexivity of operator spaces. Linear Algebra Appl. 383 (2004) 143-150.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    R. Meshulam, P. Šemrl, Minimal rank and reflexivity of operator spaces. Proc. Amer. Math. Soc. 135 (2007) 1839-1842.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsUFRN – Federal University of Rio Grande do NorteNatalBrazil

Personalised recommendations