Skip to main content

Spectral Properties of Some Degenerate Elliptic Differential Operators

  • Conference paper
  • First Online:
Spectral Theory, Function Spaces and Inequalities

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 219))

Abstract

In this paper we extend classical criteria for determining lower bounds for the least point of the essential spectrum of second-order elliptic differential operators on domains Ω ⊂ ℝn allowing for degeneracy of the coefficients on the boundary. We assume that we are given a sesquilinear form and investigate the degree of degeneracy of the coefficients near ∂Ω that can be tolerated and still maintain a closable sesquilinear form to which the First Representation Theorem can be applied. Then, we establish criteria characterizing the least point of the essential spectrum of the associated differential operator in these degenerate cases. Applications are given for convex and non-convex Ω using Hardy inequalities, which recently have been proven in terms of the distance to the boundary, showing the spectra to be purely discrete.

Mathematics Subject Classification (2010). Primary 47F05; 47B25; Secondary 35P15, 35J70.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon. Lectures on Elliptic Boundary Value Problems, Reprinted in 2010 by AMS Chelsea Publishing, AMS, Providence, RI, 1965.

    Google Scholar 

  2. W. Allegretto. On the equivalence of two types of oscillation for elliptic operators. Pacific J. Math., 55(2), 319328, 1974.

    MathSciNet  MATH  Google Scholar 

  3. D.H. Armitage and Ü. Kuran. The convexity of a domain and the superharmonicity of the signed distance function. Proc. Amer. Math. Soc., 93(4), 598 600, April 1985.

    Article  MathSciNet  MATH  Google Scholar 

  4. F.G. Avkhadiev and A. Laptev. Hardy inequalities for non-convex domains. The Erwin Schrödinger International Institute for Mathematical Physics. Preprint ESI 2185, October 2009.

    Google Scholar 

  5. F.G. Avkhadiev and K.J.Wirths. Unified Poincaré and Hardy inequalities with sharp constants for convex domains. Z. Angew. Math. Mech. 87, 632642, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Balinsky, W.D. Evans, and R.T. Lewis. Hardys inequality and curvature. Math. Phys. Arc. 11–81, 23 May 2011, and arXiv:1101.2331.

    Google Scholar 

  7. H. Brezis and M. Marcus. Hardys inequalities revisited. Ann. Scuola Norm. Pisa 25, 217237, 1997.

    MathSciNet  MATH  Google Scholar 

  8. H.L. Cycon, R.G. Froese,W.Kirsch,B. Simon. Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  9. E.B. Davies. Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, Vol. 42, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  10. D.E. Edmunds and W.D. Evans. Spectral theory and embeddings of Sobolev spaces. Ouart. J. Math., Oxford Ser. (2), 30(120), 431453, December 1979.

    Google Scholar 

  11. D.E. Edmunds and W.D. Evans. Spectral Theory and Differential Operators, Oxford University Press, Oxford OX2 6DP, 1987.

    Google Scholar 

  12. D.E. Edmunds and W.D. Evans. Spectral problems on arbitrary open subsets of Rn involving the distance to the boundary. J. Computational and Applied Math., 194, 3653, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  13. W.D. Evans and R.T. Lewis. Eigenvalues below the essential spectra of singular elliptic operators. Trans. Amer. Math. Soc., 297(1), 197222, September 1986.

    Article  MathSciNet  MATH  Google Scholar 

  14. W.D. Evans and R.T. Lewis. Hardy and Rellich inequalities with remainders. J. Math. Inequal., 1, 473490, 2007.

    MathSciNet  MATH  Google Scholar 

  15. S. Filippas, V. Mazya, and A. Tertikas. On a question of Brezis and Marcus. Calc. Var., 25(4), 491501, 2006.

    Google Scholar 

  16. S. Filippas, V. Mazya, and A. Tertikas. Critical Hardy-Sobolev inequalities. J. Math. Pures Appl., 87, 3756, 2007.

    Google Scholar 

  17. D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equation of Second Order, Reprint of the 1998 edition, Springer-Verlag, Berlin, Heidelberg, New York, 2001.

    Google Scholar 

  18. M. Hoffmann-Ostenhof, T. Hoffman-Ostenhof, and A. Laptev. A geometrical version of Hardys inequality. J. Funct. Anal. 189, 539548, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kato. Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.

    Google Scholar 

  20. R.T. Lewis. Singular elliptic operators of second order with purely discrete spectra. Trans. Amer. Math. Soc., 271, 653–666, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  21. E.H. Lieb and M. Loss. Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edition, American Mathematical Society, Providence, R.I., 2001.

    Google Scholar 

  22. A. Persson. Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand., 8, 143153, 1960.

    MathSciNet  MATH  Google Scholar 

  23. J. Piepenbrink. Nonoscillatory elliptic equations. J. Differential Equations., 15, 541550, 1974.

    MathSciNet  MATH  Google Scholar 

  24. Ralph E. Showalter. Hilbert Space Methods for Partial Differential Equations, Monographs and Studies in Mathematics, Vol. 1. Pitman, London, San Francisco, Melbourne, 1977.

    Google Scholar 

  25. B. Simon. Schrödinger semigroups. Bulletin A.M.S., 7(3), 447526, November 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger T. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this paper

Cite this paper

Lewis, R.T. (2012). Spectral Properties of Some Degenerate Elliptic Differential Operators. In: Brown, B., Lang, J., Wood, I. (eds) Spectral Theory, Function Spaces and Inequalities. Operator Theory: Advances and Applications(), vol 219. Springer, Basel. https://doi.org/10.1007/978-3-0348-0263-5_9

Download citation

Publish with us

Policies and ethics