Skip to main content

Modular Eigenvalues of the Dirichlet p(·)-Laplacian and Their Stability

  • Conference paper
  • First Online:
Spectral Theory, Function Spaces and Inequalities

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 219))

Abstract

The concept of the modular first Dirichlet eigenvalue for the p(·)-Laplacian is introduced as a generalization of the constant case. An important property of the corresponding eigenfunctions is obtained. We prove a qualitative stability result for such eigenvalues in terms of the magnitude of the perturbation of the variable modular exponent p(·).

Mathematics Subject Classification (2010). Primary 35J60; Secondary 15A18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Arendt, S. Monniaux, Domain Perturbation for the first Eigenvalue of the Dirichlet Schrödinger Operator Op. Th. 78 (1995), 1119.

    MathSciNet  Google Scholar 

  2. C. Bennewitz Approximation numbers=singular values J. of Comp. and Appl. Math. 208 (1) (2007), 102110.

    Google Scholar 

  3. L. Diening, P. Harjulehto, P. Hästö, M. Rusicka, Lebesgue and Sobolev spaces with variable exponent Lecture notes in Mathematics, vol. 2017, Springer.

    Google Scholar 

  4. D.E. Edmunds, J. Lang, Eigenvalues, embeddings and generalised trigonometric functions, Lecture notes in Mathematics, vol. 2016, Springer.

    Google Scholar 

  5. D.E. Edmunds, J. Lang, A. Nekvinda, Some s-numbers of an integral operator of Hardy type in Lp(.)-spaces J. Funct. Anal. 257 (2009), 219242.

    Google Scholar 

  6. X. Fan, Q. Zhang, D. Zhao Eigenvalues of p(x)-Laplacian Dirichlet Problem J. Math. Anal. Appl. 302 (2005), 306317.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Fleckinger-Pelle, M.L. Lapidus, Vers une resolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien C.R. Acad. Sci. Paris, Ser. I 306 (1988), 171175.

    Google Scholar 

  8. J. Fleckinger-Pelle, D. Vasilev, An example of two-term asymptotics for the counting function of a fractal drum Preprint.

    Google Scholar 

  9. G.W.F. Hegel, Grundlinien der Philosophie des Rechts, oder Naturrecht und Staatswissenschaft im Grundrisse Berlin 1833.

    Google Scholar 

  10. C. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems CBMS-RCSM, 83, Am. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  11. O. Kovacic, J. Raskosnik, Z. Rakosnik, On spaces Lp(x) and Wk,p(x) Czechoslovak Mathematical Journal 41 116 (1991), 592618.

    MathSciNet  Google Scholar 

  12. P. Lamberti, A differentiability result for the first eigenvalue of the p-Laplacian upon domain perturbations Nonlin. Anal. and Appl. to V. Lakshmikantham, Vol. 1, 2, Kluwer Acad. Publ., Dodrecht 2003, 741754.

    Google Scholar 

  13. M.L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture Trans. Am. Math. Soc. 325 (2) (1991), 465–529.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Lindquist, On the equation div(−u|p−2∇u) + λ|u|p−2u = 0, Proc. Am. Math. Soc. 109 (1) (1990), 157164.

    Google Scholar 

  15. P. Lindquist, On non-Linear Rayleigh Quotients Pot. Anal. 2 (1993), 199218.

    Article  Google Scholar 

  16. E. Zeidler, Applied functional analysis: main principles and their applications Appl. Math. Sci., 109, Springer, New York 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this paper

Cite this paper

Lang, J., Méndez, O. (2012). Modular Eigenvalues of the Dirichlet p(·)-Laplacian and Their Stability. In: Brown, B., Lang, J., Wood, I. (eds) Spectral Theory, Function Spaces and Inequalities. Operator Theory: Advances and Applications(), vol 219. Springer, Basel. https://doi.org/10.1007/978-3-0348-0263-5_8

Download citation

Publish with us

Policies and ethics