Skip to main content

A New, Rearrangement-free Proof of the Sharp Hardy–Littlewood–Sobolev Inequality

  • Conference paper
  • First Online:

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 219))

Abstract

We show that the sharp constant in the Hardy–Littlewood–Sobolev inequality can be derived using the method that we employed earlier for a similar inequality on the Heisenberg group. The merit of this proof is that it does not rely on rearrangement inequalities; it is the first one to do so for the whole parameter range.

Mathematics Subject Classification (2010). Primary 39B62; Secondary 26A33, 26D10, 46E35.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Reprint of the 1972 edition. Dover Publications, New York, 1992.

    Google Scholar 

  2. Th. Aubin, Problèmes isoperim é triques et espaces de Sobolev. J. Differ. Geometry 11 (1976), 573598.

    MathSciNet  MATH  Google Scholar 

  3. W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 11, 48164819.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math. (2) 138 (1993), no. 1, 213242.

    Google Scholar 

  5. E. A. Carlen, J. A. Carrillo, M. Loss, Hardy Littlewood Sobolev inequalities via fast diffusion flows, Proc. Nat. Acad. USA 107 (2010), no. 46, 1969619701.

    Article  MathSciNet  Google Scholar 

  6. E. A. Carlen, M. Loss, Extremals of functionals with competing symmetries. J. Funct. Anal. 88 (1990), no. 2, 437456.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. A. Carlen, M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri s inequality on Sn. Geom. Funct. Anal. 2 (1992), no. 1, 90104.

    Article  MathSciNet  MATH  Google Scholar 

  8. S-Y. A. Chang, P. C. Yang, Prescribing Gaussian curvature on S2. ActaMath. 159 (1987), no. 34, 215259.

    Google Scholar 

  9. A. Erdélyi, M. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions. Vol. II. Reprint of the 1953 original. Robert E. Krieger Publishing Co., Melbourne, FL, 1981.

    Google Scholar 

  10. R. L. Frank, E. H. Lieb, Inversion positivity and the sharp Hardy Littlewood-Sobolev inequality. Calc. Var. PDE 39 (2010), no. 12, 8599.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. L. Frank, E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group. Preprint (2010), arXiv:1009.1410.

    Google Scholar 

  12. I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products. Seventh edition. Elsevier/Academic Press, Amsterdam, 2007.

    Google Scholar 

  13. G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals (1). Math. Z. 27 (1928), 565606.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. H. Hardy, J. E. Littlewood, On certain inequalities connected with the calculus of variations. J. London Math. Soc. 5 (1930), 3439.

    Article  MATH  Google Scholar 

  15. J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sr. A-B 270 (1970), A1645A1648.

    MathSciNet  Google Scholar 

  16. Y. Y. Li, M. Zhu, Uniqueness theorems through the method of moving spheres. Duke Math. J. 80 (1995), no. 2, 383417.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard s nonlinear equation. Studies in Appl. Math. 57 (1977), no. 2, 93105.

    MathSciNet  Google Scholar 

  18. E. H. Lieb, Sharp constants in the Hardy Littlewood Sobolev and related inequalities. Ann. of Math. (2) 118 (1983), no. 2, 349374.

    Google Scholar 

  19. E.H. Lieb, M. Loss, Analysis. Second edition. Graduate Studies in Mathematics 14, Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  20. P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1 (1985), no. 2, 45121.

    MATH  Google Scholar 

  21. E. Onofri, On the positivity of the effective action in a theory of random surfaces. Comm. Math. Phys. 86 (1982), no. 3, 321326.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Rosen, Minimum value for c in the Sobolev inequality 3. SIAM J. Appl. Math. 21 (1971), 3032.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. L. Sobolev, On a theorem of functional analysis. Mat. Sb. (N.S.) 4 (1938), 471479; English transl. in Amer. Math. Soc. Transl. Ser. 2 34 (1963), 3968.

    Google Scholar 

  24. G. Talenti, Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976), 353372.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert L. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this paper

Cite this paper

Frank, R.L., Lieb, E.H. (2012). A New, Rearrangement-free Proof of the Sharp Hardy–Littlewood–Sobolev Inequality. In: Brown, B., Lang, J., Wood, I. (eds) Spectral Theory, Function Spaces and Inequalities. Operator Theory: Advances and Applications(), vol 219. Springer, Basel. https://doi.org/10.1007/978-3-0348-0263-5_4

Download citation

Publish with us

Policies and ethics