Skip to main content

Tarski’s Proofs of BDT and the Inequality-BDT

  • Chapter
  • First Online:
Proofs of the Cantor-Bernstein Theorem

Part of the book series: Science Networks. Historical Studies ((SNHS,volume 45))

  • 1421 Accesses

Abstract

We review Tarski’s 1949a proof of the inequality-BDT: If k ≠ 0 and kmkn then mn, where k is a natural number and m, n are cardinal numbers, from which Tarski easily deduced, using CBT, BDT: If k ≠ 0 and km = kn then m = n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For some n, the Nn, N′n may be empty.

  2. 2.

    Sierpiński’s motivation to prove theorem 2 in 1947c (there lemma 1) was for a proof of theorem 56 of Lindenbaum-Tarski 1926: 2mm = 2m. Sierpiński’s proof may have provoked Tarski, who referenced Sierpiński’s proof, to produce his own version in his 1948 paper.

  3. 3.

    Still, let us recall that Sierpiński (see Chap. 28) and Kuratowski (see Chap. 30) did provide proofs of BDT under the assumption that the partitions are disjoint.

  4. 4.

    Theorem 5 of Lindenbaum-Tarski 1926 is in the language of sets and mappings in which the above proof is given; theorem 6 there is in the language of cardinal numbers as is theorem 2 above.

  5. 5.

    If ℵ0 q ≤ m then m = m′ + ℵ0 q = m′ + 2ℵ0 q = m′ + ℵ0 q + ℵ0 q = m + ℵ0 q = m + (ℵ0 + 1)q = m + ℵ0 q + q = m + q. However, q ≤ m does not entail m = m + q.

  6. 6.

    For there are three cardinal numbers n, p 1, q 1 such that m = n + p 1 and m′ = n + q 1 and m + p 1 = m = m + q 1. So m′ + p 1 = n + q 1 + p 1 = n + p 1 + q 1 = m + p 1 = m hence m ≥ m′.

  7. 7.

    Our notation here slightly differs from that of Tarski and as a result so does our chain of equalities. In Tarski there seems to be a typo on the third equality from the bottom of the proof: p′ is missing on the left side.

  8. 8.

    Theorem 30 of Lindenbaum-Tarski 1926 says that m + p = m + q iff 2m + p = 2m + q.

  9. 9.

    From which it follows that n = m + s so that n ≥ m and by the given m ≥ n and CBT, m = n.

  10. 10.

    Note that ϕ j and ψ j are chosen from the many equivalences that exist between the partitions but since the number of choices is finite the axiom of choice is not invoked.

  11. 11.

    Bernstein extended ϕ and ψ to include their inverse and he was followed in this by Sierpiński 1922 while Tarski used inverses, as we have already remarked with regard to his proof of Theorem 2. The advantage of Bernstein’s notation is that ϕ and ψ, and thus the χ n , are always defined while the advantage of Tarski’s notation will become apparent in the definition of the G n below. Tarski stressed this difference (p 88 footnote 13) and claimed that the Bernstein-Sierpiński method cannot be generalized, an observation, with regard to BDT, from which we differed (see Sects. 14.3 and 28.1).

  12. 12.

    The necessity in having the χ enumerated will become clear in the proof.

  13. 13.

    The R j (R′ j ) are equivalent by ϕ j (ψ j ).

  14. 14.

    Our notation deviates from Tarski’s mainly in the signs used for entities.

  15. 15.

    Compare this definition with the definition of the sets N n in the proof of Theorem 2 above. This definition is the main metaphor of Tarski’s paper discussed here. A similar definition appeared already in Bernstein’s proof of BDT (see Sect. 14.2) for the sets to be interchanged. We have here perhaps another case of proof-processing.

  16. 16.

    The equivalence mapping is the union of the χ j reduced to G j .

  17. 17.

    Incidentally, in their proof Doyle-Conway ignore the lemma kn = kn + kr → kn = kn + r but use the lemma kn = kn + r → n = n + r (lemma 3 p 26).

References

  • Bernstein F. Untersuchungen aus der Mengenlehre. Mathematische Annalen. 1905;61:117–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Doyle PG, Conway JH. Division by three. 1994. http://www.math.dartmouth.edu/~doyle/docs/three/three.pdf.

  • Kőnig D. Über Graphen und ihre Anwendung auf Determinanttheorie und Mengenlehre, Mathematische Annalen 77:453–65. Partial English translation: Biggs NL, Lloyd EK., Wilson RJ, editors. Graph theory 1736–1936. Oxford: Clarendon press; 1986. pp. 203–5.

    Google Scholar 

  • Lindenbaum A, Tarski A. Communication sur les recherches de la thèorie des ensembles. Comptes rendu des séances de la société Polonaise de Mathematique section Varsovie Annales de la Societe Polonaise Mathematique. 1926;19:299–330.

    MATH  Google Scholar 

  • Sierpiński W. Sur l’ègalitè 2m=2n pour les nombres cardinaux. Fund Math. 1922;3:1–6.

    MATH  Google Scholar 

  • Sierpiński W. Demonstration de l’egalite 2m-m=2m pour les nombres cardinaux transfini. Fund Math. 1947c;34:113–8.

    MathSciNet  MATH  Google Scholar 

  • Sierpiński W. Sur l’implication (2m≤2n)→(m≤n) pour les nombres cardinaux. Fund Math. 1947d;34:148–54.

    MathSciNet  MATH  Google Scholar 

  • Sierpiński W. Sur la division des types ordinaux. Fund Math. 1948;35:1–12.

    MathSciNet  MATH  Google Scholar 

  • Tarski A. Über Äquivalenz der Mengen in Bezug auf eine beliebige Klasse von Abbildungen. International Congress of Mathematicians. 1928;2:243–52.

    Google Scholar 

  • Tarski A. Axiomatic and algebraic aspects of two theorems on sums of cardinals. Fund Math. 1948;35:79–104.

    MathSciNet  MATH  Google Scholar 

  • Tarski A. Cardinal algebras. New York: Oxford University Press; 1949a.

    MATH  Google Scholar 

  • Zermelo E. Über die Addition transfiniter Cardinalzahlen, Nachrichten von der Kőniglich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse aus dem Jahre 1901;34–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie Hinkis .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Hinkis, A. (2013). Tarski’s Proofs of BDT and the Inequality-BDT. In: Proofs of the Cantor-Bernstein Theorem. Science Networks. Historical Studies, vol 45. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0224-6_34

Download citation

Publish with us

Policies and ethics