Skip to main content

Proteases from Inflammatory Cells: Regulation of Inflammatory Response

  • Chapter
  • First Online:
Proteases and Their Receptors in Inflammation

Abstract

In this review, we summarize the current data pertaining to proteases mainly from polymorphonuclear neutrophil (PMN) and monocytes in the regulation of the inflammatory response. However, tryptase and chymase stored in mast cell granules, or granzymes from lymphocytes are other examples of proteases, which greatly influence several biological processes including extracellular matrix degradation, vasoconstriction, pathogen clearance, and cell death. A specific emphasis will be given to proteases from PMN, which are the first cells to be recruited to the inflammatory site. Proteases clearly modulate inflammation through cleavage of adhesion molecules, receptor implicated in pathogen recognition, phagocytosis, and production of cytokines. These cleavages can have pro or anti-inflammatory effect. In addition PMN-derived proteases can modulate the apoptosis of PMN and their uptake by macrophage, two pivotal steps in the resolution of inflammation. Deciphering the molecular mechanism governing the protease-based immune regulation should lead to novel and timely therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANCA:

Antineutrophil cytoplasmic antibody

ADAM:

A disintegrin and a metalloprotease

BAI1:

Brain-specific angiogenesis inhibitor 1

CCL:

CC chemokine ligand

CCR:

CC chemokine receptor

CR:

Complement receptor

CRP:

C reactive protein

ECM:

Extracellular matrix

EGFR:

Epithelial growth factor receptor

FcγR:

Fcγ receptor

G-CSF:

Granulocyte colony-stimulating factor

G-CSFR:

G-CSF receptor

GM-CSF:

Granulocyte macrophage colony stimulating factor

ICAM:

Intercellular adhesion molecule

LFA-1:

Lymphocyte function-associated antigen 1

LPC:

Lysophosphatidylcholine

LPS:

Lipopolysaccharide

IL:

Interleukin

MAC1:

Macrophage receptor 1

MADCAM1:

Mucosal vascular addressin cell-adhesion molecule 1

MCP-1:

Monocyte chemotactic protein-1

MFG-E8:

Milk fat globule-EGF factor 8 protein

MIP:

Macrophage inflammatory protein

MMP:

Matrix metalloproteinase

MT1-MMP:

Membrane type-1 MMP

NADPH:

Nicotinamide adenine dinucleotide phosphate

NET:

Neutrophils extracellular trap

PAF:

Platelet-activating factor

PAR:

Protease-activated receptor

PGE2:

Prostaglandin E2

PLA2:

Phospholipase A2

PMN:

Polymorphonuclear neutrophils

PS:

Phosphatidylserine

PSGL1:

P-selectin glycoprotein ligand 1

PSR:

PS receptor

RANTES:

Regulated on activation normal T expressed and secreted

ROS:

Reactive oxygen species

SAA:

Serum amyloid A

SDF-1:

Stromal cell-derived factor-1

SHP2:

Src homology region 2 domain-containing phosphatase-1

SR-A:

Scavenger A

TIM-4:

T cell immunoglobulin mucin-4

TNFα:

Tumor necrosis factor

TNFR:

TNFα receptor

VCAM:

Vascular cell-adhesion molecule 1

VLA4:

Very late activation antigen-4

XIAP:

X-linked Inhibitor of apoptosis protein

References

  1. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    PubMed  CAS  Google Scholar 

  2. Kantari C, Pederzoli-Ribeil M, Witko-Sarsat V (2008) The role of neutrophils and monocytes in innate immunity. Contrib Microbiol 15:118–146

    PubMed  CAS  Google Scholar 

  3. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    PubMed  CAS  Google Scholar 

  4. Owen CA, Campbell EJ (1999) The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 65:137–150

    PubMed  CAS  Google Scholar 

  5. Pham CT (2008) Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 40:1317–1333

    PubMed  CAS  Google Scholar 

  6. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486

    PubMed  CAS  Google Scholar 

  7. Owen CA (2008) Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization. Int J Biochem Cell Biol 40:1246–1272

    PubMed  CAS  Google Scholar 

  8. Hajjar E, Broemstrup T, Kantari C, Witko-Sarsat V, Reuter N (2010) Structures of human proteinase 3 and neutrophil elastase – so similar yet so different. FEBS J 277:2238–2254

    PubMed  CAS  Google Scholar 

  9. Klein T, Bischoff R (2010) Physiology and pathophysiology of matrix metalloproteases. Amino Acids

    Google Scholar 

  10. Witko-Sarsat V, Reuter N, Mouthon L (2010) Interaction of proteinase 3 with its associated partners: implications in the pathogenesis of Wegener’s granulomatosis. Curr Opin Rheumatol 22:1–7

    PubMed  CAS  Google Scholar 

  11. Korkmaz B, Moreau T, Gauthier F (2008) Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 90:227–242

    PubMed  CAS  Google Scholar 

  12. Kahn R, Hellmark T, Leeb-Lundberg LM, Akbari N, Todiras M, Olofsson T, Wieslander J, Christensson A, Westman K, Bader M et al (2009) Neutrophil-derived proteinase 3 induces kallikrein-independent release of a novel vasoactive kinin. J Immunol 182:7906–7915

    PubMed  CAS  Google Scholar 

  13. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    PubMed  CAS  Google Scholar 

  14. Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156

    PubMed  CAS  Google Scholar 

  15. Smalley DM, Ley K (2005) L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med 9:255–266

    PubMed  CAS  Google Scholar 

  16. Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8:929–941

    PubMed  CAS  Google Scholar 

  17. Preece G, Murphy G, Ager A (1996) Metalloproteinase-mediated regulation of L-selectin levels on leucocytes. J Biol Chem 271:11634–11640

    PubMed  CAS  Google Scholar 

  18. Bazil V, Strominger JL (1994) Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes. Induction of cleavage of L-selectin via CD16. J Immunol 152:1314–1322

    PubMed  CAS  Google Scholar 

  19. Sanchez-Mateos P, Campanero MR, del Pozo MA, Sanchez-Madrid F (1995) Regulatory role of CD43 leukosialin on integrin-mediated T-cell adhesion to endothelial and extracellular matrix ligands and its polar redistribution to a cellular uropod. Blood 86:2228–2239

    PubMed  CAS  Google Scholar 

  20. Remold-O’Donnell E, Parent D (1995) Specific sensitivity of CD43 to neutrophil elastase. Blood 86:2395–2402

    PubMed  Google Scholar 

  21. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC (1995) Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80:413–422

    PubMed  CAS  Google Scholar 

  22. Chan JR, Hyduk SJ, Cybulsky MI (2001) Chemoattractants induce a rapid and transient upregulation of monocyte alpha4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J Exp Med 193:1149–1158

    PubMed  CAS  Google Scholar 

  23. Dunne JL, Ballantyne CM, Beaudet AL, Ley K (2002) Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 99:336–341

    PubMed  CAS  Google Scholar 

  24. Arfors KE, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69:338–340

    PubMed  CAS  Google Scholar 

  25. Diamond MS, Staunton DE, Marlin SD, Springer TA (1991) Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65:961–971

    PubMed  CAS  Google Scholar 

  26. Staunton DE, Dustin ML, Springer TA (1989) Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339:61–64

    PubMed  CAS  Google Scholar 

  27. Hyduk SJ, Chan JR, Duffy ST, Chen M, Peterson MD, Waddell TK, Digby GC, Szaszi K, Kapus A, Cybulsky MI (2007) Phospholipase C, calcium, and calmodulin are critical for alpha4beta1 integrin affinity up-regulation and monocyte arrest triggered by chemoattractants. Blood 109:176–184

    PubMed  CAS  Google Scholar 

  28. Hibbs ML, Xu H, Stacker SA, Springer TA (1991) Regulation of adhesion of ICAM-1 by the cytoplasmic domain of LFA-1 integrin beta subunit. Science 251:1611–1613

    PubMed  CAS  Google Scholar 

  29. Jevnikar Z, Obermajer N, Pecar-Fonovic U, Karaoglanovic-Carmona A, Kos J (2009) Cathepsin X cleaves the beta2 cytoplasmic tail of LFA-1 inducing the intermediate affinity form of LFA-1 and alpha-actinin-1 binding. Eur J Immunol 39:3217–3227

    PubMed  CAS  Google Scholar 

  30. Lechner AM, Assfalg-Machleidt I, Zahler S, Stoeckelhuber M, Machleidt W, Jochum M, Nagler DK (2006) RGD-dependent binding of procathepsin X to integrin alphavbeta3 mediates cell-adhesive properties. J Biol Chem 281:39588–39597

    PubMed  CAS  Google Scholar 

  31. Essick E, Sithu S, Dean W, D’Souza S (2008) Pervanadate-induced shedding of the intercellular adhesion molecule (ICAM)-1 ectodomain is mediated by membrane type-1 matrix metalloproteinase (MT1-MMP). Mol Cell Biochem 314:151–159

    PubMed  CAS  Google Scholar 

  32. Robledo O, Papaioannou A, Ochietti B, Beauchemin C, Legault D, Cantin A, King PD, Daniel C, Alakhov VY, Potworowski EF et al (2003) ICAM-1 isoforms: specific activity and sensitivity to cleavage by leukocyte elastase and cathepsin G. Eur J Immunol 33:1351–1360

    PubMed  CAS  Google Scholar 

  33. Champagne B, Tremblay P, Cantin A, St Pierre Y (1998) Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J Immunol 161:6398–6405

    PubMed  CAS  Google Scholar 

  34. Cuzzocrea S, McDonald MC, Mazzon E, Mota-Filipe H, Centorrino T, Terranova ML, Ciccolo A, Britti D, Caputi AP, Thiemermann C (2001) Calpain inhibitor I reduces colon injury caused by dinitrobenzene sulphonic acid in the rat. Gut 48:478–488

    PubMed  CAS  Google Scholar 

  35. Sithu SD, English WR, Olson P, Krubasik D, Baker AH, Murphy G, D’Souza SE (2007) Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. J Biol Chem 282:25010–25019

    PubMed  CAS  Google Scholar 

  36. Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838

    PubMed  CAS  Google Scholar 

  37. Pfaff M, Du X, Ginsberg MH (1999) Calpain cleavage of integrin beta cytoplasmic domains. FEBS Lett 460:17–22

    PubMed  CAS  Google Scholar 

  38. Schoenwaelder SM, Yuan Y, Cooray P, Salem HH, Jackson SP (1997) Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin alphaIIbbeta3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. J Biol Chem 272:1694–1702

    PubMed  CAS  Google Scholar 

  39. Dewitt S, Hallett M (2007) Leukocyte membrane “expansion”: a central mechanism for leukocyte extravasation. J Leukoc Biol 81:1160–1164

    PubMed  CAS  Google Scholar 

  40. Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187:903–915

    PubMed  CAS  Google Scholar 

  41. Young RE, Thompson RD, Larbi KY, La M, Roberts CE, Shapiro SD, Perretti M, Nourshargh S (2004) Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol 172:4493–4502

    PubMed  CAS  Google Scholar 

  42. Wang S, Dangerfield JP, Young RE, Nourshargh S (2005) PECAM-1, alpha6 integrins and neutrophil elastase cooperate in mediating neutrophil transmigration. J Cell Sci 118:2067–2076

    PubMed  CAS  Google Scholar 

  43. Tani K, Ogushi F, Kido H, Kawano T, Kunori Y, Kamimura T, Cui P, Sone S (2000) Chymase is a potent chemoattractant for human monocytes and neutrophils. J Leukoc Biol 67:585–589

    PubMed  CAS  Google Scholar 

  44. Tomimori Y, Muto T, Fukami H, Saito K, Horikawa C, Tsuruoka N, Saito M, Sugiura N, Yamashiro K, Sumida M et al (2002) Chymase participates in chronic dermatitis by inducing eosinophil infiltration. Lab Invest 82:789–794

    PubMed  CAS  Google Scholar 

  45. Scudamore CL, Jepson MA, Hirst BH, Miller HR (1998) The rat mucosal mast cell chymase, RMCP-II, alters epithelial cell monolayer permeability in association with altered distribution of the tight junction proteins ZO-1 and occludin. Eur J Cell Biol 75:321–330

    PubMed  CAS  Google Scholar 

  46. He S, Walls AF (1998) Human mast cell chymase induces the accumulation of neutrophils, eosinophils and other inflammatory cells in vivo. Br J Pharmacol 125:1491–1500

    PubMed  CAS  Google Scholar 

  47. He S, Peng Q, Walls AF (1997) Potent induction of a neutrophil and eosinophil-rich infiltrate in vivo by human mast cell tryptase: selective enhancement of eosinophil recruitment by histamine. J Immunol 159:6216–6225

    PubMed  CAS  Google Scholar 

  48. Huang C, Friend DS, Qiu WT, Wong GW, Morales G, Hunt J, Stevens RL (1998) Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 160:1910–1919

    PubMed  CAS  Google Scholar 

  49. Compton SJ, Cairns JA, Holgate ST, Walls AF (1998) The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 beta and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol 161:1939–1946

    PubMed  CAS  Google Scholar 

  50. Kielty CM, Lees M, Shuttleworth CA, Woolley D (1993) Catabolism of intact type VI collagen microfibrils: susceptibility to degradation by serine proteinases. Biochem Biophys Res Commun 191:1230–1236

    PubMed  CAS  Google Scholar 

  51. Lazaar AL, Plotnick MI, Kucich U, Crichton I, Lotfi S, Das SK, Kane S, Rosenbloom J, Panettieri RA Jr, Schechter NM et al (2002) Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol 169:1014–1020

    PubMed  CAS  Google Scholar 

  52. Fajardo I, Pejler G (2003) Human mast cell beta-tryptase is a gelatinase. J Immunol 171:1493–1499

    PubMed  CAS  Google Scholar 

  53. Tosi MF, Berger M (1988) Functional differences between the 40 kDa and 50 to 70 kDa IgG Fc receptors on human neutrophils revealed by elastase treatment and antireceptor antibodies. J Immunol 141:2097–2103

    PubMed  CAS  Google Scholar 

  54. Middelhoven PJ, Van Buul JD, Hordijk PL, Roos D (2001) Different proteolytic mechanisms involved in Fc gamma RIIIb shedding from human neutrophils. Clin Exp Immunol 125:169–175

    PubMed  CAS  Google Scholar 

  55. Teillaud C, Galon J, Zilber MT, Mazieres N, Spagnoli R, Kurrle R, Fridman WH, Sautes C (1993) Soluble CD16 binds peripheral blood mononuclear cells and inhibits pokeweed-mitogen-induced responses. Blood 82:3081–3090

    PubMed  CAS  Google Scholar 

  56. Sadallah S, Hess C, Miot S, Spertini O, Lutz H, Schifferli JA (1999) Elastase and metalloproteinase activities regulate soluble complement receptor 1 release. Eur J Immunol 29:3754–3761

    PubMed  CAS  Google Scholar 

  57. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    PubMed  CAS  Google Scholar 

  58. Le-Barillec K, Si-Tahar M, Balloy V, Chignard M (1999) Proteolysis of monocyte CD14 by human leukocyte elastase inhibits lipopolysaccharide-mediated cell activation. J Clin Invest 103:1039–1046

    PubMed  CAS  Google Scholar 

  59. Doring G, Frank F, Boudier C, Herbert S, Fleischer B, Bellon G (1995) Cleavage of lymphocyte surface antigens CD2, CD4, and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in patients with cystic fibrosis. J Immunol 154:4842–4850

    PubMed  CAS  Google Scholar 

  60. Gyetko MR, Sud S, Kendall T, Fuller JA, Newstead MW, Standiford TJ (2000) Urokinase receptor-deficient mice have impaired neutrophil recruitment in response to pulmonary Pseudomonas aeruginosa infection. J Immunol 165:1513–1519

    PubMed  CAS  Google Scholar 

  61. Beaufort N, Leduc D, Rousselle JC, Magdolen V, Luther T, Namane A, Chignard M, Pidard D (2004) Proteolytic regulation of the urokinase receptor/CD87 on monocytic cells by neutrophil elastase and cathepsin G. J Immunol 172:540–549

    PubMed  CAS  Google Scholar 

  62. Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    PubMed  CAS  Google Scholar 

  63. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    PubMed  CAS  Google Scholar 

  64. Belaaouaj A, McCarthy R, Baumann M, Gao Z, Ley TJ, Abraham SN, Shapiro SD (1998) Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med 4:615–618

    PubMed  CAS  Google Scholar 

  65. Belaaouaj A (2002) Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis. Microbes Infect 4:1259–1264

    PubMed  CAS  Google Scholar 

  66. Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959

    PubMed  CAS  Google Scholar 

  67. Bangalore N, Travis J, Onunka VC, Pohl J, Shafer WM (1990) Identification of the primary antimicrobial domains in human neutrophil cathepsin G. J Biol Chem 265:13584–13588

    PubMed  CAS  Google Scholar 

  68. Gabay JE, Almeida RP (1993) Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes: defensins and azurocidin. Curr Opin Immunol 5:97–102

    PubMed  CAS  Google Scholar 

  69. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    PubMed  CAS  Google Scholar 

  70. von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, Medina E (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111:3070–3080

    Google Scholar 

  71. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582

    PubMed  CAS  Google Scholar 

  72. Philippart F, Cavaillon JM (2007) Sepsis mediators. Curr Infect Dis Rep 9:358–365

    PubMed  Google Scholar 

  73. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    PubMed  CAS  Google Scholar 

  74. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    PubMed  CAS  Google Scholar 

  75. Coeshott C, Ohnemus C, Pilyavskaya A, Ross S, Wieczorek M, Kroona H, Leimer AH, Cheronis J (1999) Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci USA 96:6261–6266

    PubMed  CAS  Google Scholar 

  76. Mizutani H, Schechter N, Lazarus G, Black RA, Kupper TS (1991) Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. J Exp Med 174:821–825

    PubMed  CAS  Google Scholar 

  77. Bank U, Kupper B, Reinhold D, Hoffmann T, Ansorge S (1999) Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett 461:235–240

    PubMed  CAS  Google Scholar 

  78. Zhao W, Oskeritzian CA, Pozez AL, Schwartz LB (2005) Cytokine production by skin-derived mast cells: endogenous proteases are responsible for degradation of cytokines. J Immunol 175:2635–2642

    PubMed  CAS  Google Scholar 

  79. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9:271–285

    PubMed  CAS  Google Scholar 

  80. Scuderi P, Nez PA, Duerr ML, Wong BJ, Valdez CM (1991) Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin. Cell Immunol 135:299–313

    PubMed  CAS  Google Scholar 

  81. Porteu F, Brockhaus M, Wallach D, Engelmann H, Nathan CF (1991) Human neutrophil elastase releases a ligand-binding fragment from the 75-kDa tumor necrosis factor (TNF) receptor. Comparison with the proteolytic activity responsible for shedding of TNF receptors from stimulated neutrophils. J Biol Chem 266:18846–18853

    PubMed  CAS  Google Scholar 

  82. Ariel A, Yavin EJ, Hershkoviz R, Avron A, Franitza S, Hardan I, Cahalon L, Fridkin M, Lider O (1998) IL-2 induces T cell adherence to extracellular matrix: inhibition of adherence and migration by IL-2 peptides generated by leukocyte elastase. J Immunol 161:2465–2472

    PubMed  CAS  Google Scholar 

  83. Bank U, Reinhold D, Schneemilch C, Kunz D, Synowitz HJ, Ansorge S (1999) Selective proteolytic cleavage of IL-2 receptor and IL-6 receptor ligand binding chains by neutrophil-derived serine proteases at foci of inflammation. J Interferon Cytokine Res 19:1277–1287

    PubMed  CAS  Google Scholar 

  84. Novick D, Rubinstein M, Azam T, Rabinkov A, Dinarello CA, Kim SH (2006) Proteinase 3 is an IL-32 binding protein. Proc Natl Acad Sci USA 103:3316–3321

    PubMed  CAS  Google Scholar 

  85. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB (1997) Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int 51:1376–1382

    PubMed  CAS  Google Scholar 

  86. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  Google Scholar 

  87. Kekow J, Csernok E, Szymkowiak C, Gross WL (1997) Interaction of transforming growth factor beta (TGF beta) with proteinase 3. Adv Exp Med Biol 421:307–313

    PubMed  CAS  Google Scholar 

  88. Taipale J, Lohi J, Saarinen J, Kovanen PT, Keski-Oja J (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270:4689–4696

    PubMed  CAS  Google Scholar 

  89. Zabel BA, Allen SJ, Kulig P, Allen JA, Cichy J, Handel TM, Butcher EC (2005) Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem 280:34661–34666

    PubMed  CAS  Google Scholar 

  90. Guillabert A, Wittamer V, Bondue B, Godot V, Imbault V, Parmentier M, Communi D (2008) Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. J Leukoc Biol 84:1530–1538

    PubMed  CAS  Google Scholar 

  91. Padrines M, Wolf M, Walz A, Baggiolini M (1994) Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett 352:231–235

    PubMed  CAS  Google Scholar 

  92. Ryu OH, Choi SJ, Firatli E, Choi SW, Hart PS, Shen RF, Wang G, Wu WW, Hart TC (2005) Proteolysis of macrophage inflammatory protein-1alpha isoforms LD78beta and LD78alpha by neutrophil-derived serine proteases. J Biol Chem 280:17415–17421

    PubMed  CAS  Google Scholar 

  93. Berahovich RD, Miao Z, Wang Y, Premack B, Howard MC, Schall TJ (2005) Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol 174:7341–7351

    PubMed  CAS  Google Scholar 

  94. Lim JK, Lu W, Hartley O, DeVico AL (2006) N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. J Leukoc Biol 80:1395–1404

    PubMed  CAS  Google Scholar 

  95. Pang L, Nie M, Corbett L, Sutcliffe A, Knox AJ (2006) Mast cell beta-tryptase selectively cleaves eotaxin and RANTES and abrogates their eosinophil chemotactic activities. J Immunol 176:3788–3795

    PubMed  CAS  Google Scholar 

  96. Richter R, Bistrian R, Escher S, Forssmann WG, Vakili J, Henschler R, Spodsberg N, Frimpong-Boateng A, Forssmann U (2005) Quantum proteolytic activation of chemokine CCL15 by neutrophil granulocytes modulates mononuclear cell adhesiveness. J Immunol 175:1599–1608

    PubMed  CAS  Google Scholar 

  97. Nufer O, Corbett M, Walz A (1999) Amino-terminal processing of chemokine ENA-78 regulates biological activity. Biochemistry 38:636–642

    PubMed  CAS  Google Scholar 

  98. Cohen AB, Stevens MD, Miller EJ, Atkinson MA, Mullenbach G (1992) Generation of the neutrophil-activating peptide-2 by cathepsin G and cathepsin G-treated human platelets. Am J Physiol 263:L249–L256

    PubMed  CAS  Google Scholar 

  99. Schiemann F, Grimm TA, Hoch J, Gross R, Lindner B, Petersen F, Bulfone-Paus S, Brandt E (2006) Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase and cathepsin G. Blood 107:2234–2242

    PubMed  CAS  Google Scholar 

  100. Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, Delaunay T, Lazarini F, Virelizier JL, Chignard M et al (2002) Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 277:15677–15689

    PubMed  CAS  Google Scholar 

  101. Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    PubMed  CAS  Google Scholar 

  102. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    PubMed  CAS  Google Scholar 

  103. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206:15–23

    PubMed  CAS  Google Scholar 

  104. Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76:1352–1364

    PubMed  CAS  Google Scholar 

  105. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    PubMed  CAS  Google Scholar 

  106. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    PubMed  CAS  Google Scholar 

  107. Chua BT, Guo K, Li P (2000) Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem 275:5131–5135

    PubMed  CAS  Google Scholar 

  108. Stoka V, Turk V, Turk B (2007) Lysosomal cysteine cathepsins: signaling pathways in apoptosis. Biol Chem 388:555–560

    PubMed  CAS  Google Scholar 

  109. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG (2010) Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2:216–227

    PubMed  CAS  Google Scholar 

  110. Kennedy AD, DeLeo FR (2009) Neutrophil apoptosis and the resolution of infection. Immunol Res 43:25–61

    PubMed  Google Scholar 

  111. Whyte MK, Meagher LC, MacDermot J, Haslett C (1993) Impairment of function in aging neutrophils is associated with apoptosis. J Immunol 150:5124–5134

    PubMed  CAS  Google Scholar 

  112. Dransfield I, Buckle AM, Savill JS, McDowall A, Haslett C, Hogg N (1994) Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol 153:1254–1263

    PubMed  CAS  Google Scholar 

  113. Coxon A, Tang T, Mayadas TN (1999) Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte/macrophage colony-stimulating factor. J Exp Med 190:923–934

    PubMed  CAS  Google Scholar 

  114. Aoshiba K, Nakajima Y, Yasui S, Tamaoki J, Nagai A (1999) Red blood cells inhibit apoptosis of human neutrophils. Blood 93:4006–4010

    PubMed  CAS  Google Scholar 

  115. Andonegui G, Trevani AS, Lopez DH, Raiden S, Giordano M, Geffner JR (1997) Inhibition of human neutrophil apoptosis by platelets. J Immunol 158:3372–3377

    PubMed  CAS  Google Scholar 

  116. Luo HR, Loison F (2008) Constitutive neutrophil apoptosis: mechanisms and regulation. Am J Hematol 83:288–295

    PubMed  CAS  Google Scholar 

  117. Sakamoto E, Hato F, Kato T, Sakamoto C, Akahori M, Hino M, Kitagawa S (2005) Type I and type II interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2. J Leukoc Biol 78:301–309

    PubMed  CAS  Google Scholar 

  118. Murray DA, Wilton JM (2003) Lipopolysaccharide from the periodontal pathogen Porphyromonas gingivalis prevents apoptosis of HL60-derived neutrophils in vitro. Infect Immun 71:7232–7235

    PubMed  CAS  Google Scholar 

  119. Kobayashi SD, Voyich JM, Whitney AR, DeLeo FR (2005) Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol 78:1408–1418

    PubMed  CAS  Google Scholar 

  120. Maianski NA, Maianski AN, Kuijpers TW, Roos D (2004) Apoptosis of neutrophils. Acta Haematol 111:56–66

    PubMed  CAS  Google Scholar 

  121. Murphy BM, O’Neill AJ, Adrain C, Watson RW, Martin SJ (2003) The apoptosome pathway to caspase activation in primary human neutrophils exhibits dramatically reduced requirements for cytochrome C. J Exp Med 197:625–632

    PubMed  CAS  Google Scholar 

  122. Moulding DA, Akgul C, Derouet M, White MR, Edwards SW (2001) BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. J Leukoc Biol 70:783–792

    PubMed  CAS  Google Scholar 

  123. Squier MK, Sehnert AJ, Sellins KS, Malkinson AM, Takano E, Cohen JJ (1999) Calpain and calpastatin regulate neutrophil apoptosis. J Cell Physiol 178:311–319

    PubMed  CAS  Google Scholar 

  124. Drewniak A, van Raam BJ, Geissler J, Tool AT, Mook OR, van den Berg TK, Baas F, Kuijpers TW (2009) Changes in gene expression of granulocytes during in vivo granulocyte colony-stimulating factor/dexamethasone mobilization for transfusion purposes. Blood 113:5979–5998

    PubMed  CAS  Google Scholar 

  125. Altznauer F, Martinelli S, Yousefi S, Thurig C, Schmid I, Conway EM, Schoni MH, Vogt P, Mueller C, Fey MF et al (2004) Inflammation-associated cell cycle-independent block of apoptosis by survivin in terminally differentiated neutrophils. J Exp Med 199:1343–1354

    PubMed  CAS  Google Scholar 

  126. Kobayashi S, Yamashita K, Takeoka T, Ohtsuki T, Suzuki Y, Takahashi R, Yamamoto K, Kaufmann SH, Uchiyama T, Sasada M et al (2002) Calpain-mediated X-linked inhibitor of apoptosis degradation in neutrophil apoptosis and its impairment in chronic neutrophilic leukemia. J Biol Chem 277:33968–33977

    PubMed  CAS  Google Scholar 

  127. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    PubMed  CAS  Google Scholar 

  128. Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B (2008) Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 283:19140–19150

    PubMed  CAS  Google Scholar 

  129. Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, Yousefi S, Simon HU (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205:685–698

    PubMed  CAS  Google Scholar 

  130. Conus S, Simon HU (2008) Cathepsins: key modulators of cell death and inflammatory responses. Biochem Pharmacol 76:1374–1382

    PubMed  CAS  Google Scholar 

  131. Pederzoli M, Kantari C, Gausson V, Moriceau S, Witko-Sarsat V (2005) Proteinase-3 induces procaspase-3 activation in the absence of apoptosis: potential role of this compartmentalized activation of membrane-associated procaspase-3 in neutrophils. J Immunol 174:6381–6390

    PubMed  CAS  Google Scholar 

  132. Hunter MG, Druhan LJ, Massullo PR, Avalos BR (2003) Proteolytic cleavage of granulocyte colony-stimulating factor and its receptor by neutrophil elastase induces growth inhibition and decreased cell surface expression of the granulocyte colony-stimulating factor receptor. Am J Hematol 74:149–155

    PubMed  CAS  Google Scholar 

  133. Walcheck B, Herrera AH, St Hill C, Mattila PE, Whitney AR, Deleo FR (2006) ADAM17 activity during human neutrophil activation and apoptosis. Eur J Immunol 36:968–976

    PubMed  CAS  Google Scholar 

  134. Bonnefoy A, Legrand C (2000) Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res 98:323–332

    PubMed  CAS  Google Scholar 

  135. Pallero MA, Elzie CA, Chen J, Mosher DF, Murphy-Ullrich JE (2008) Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. FASEB J 22:3968–3979

    PubMed  CAS  Google Scholar 

  136. Rafiq K, Hanscom M, Valerie K, Steinberg SF, Sabri A (2008) Novel mode for neutrophil protease cathepsin G-mediated signaling: membrane shedding of epidermal growth factor is required for cardiomyocyte anoikis. Circ Res 102:32–41

    PubMed  CAS  Google Scholar 

  137. Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2:401–409

    PubMed  CAS  Google Scholar 

  138. Bots M, Medema JP (2006) Granzymes at a glance. J Cell Sci 119:5011–5014

    PubMed  CAS  Google Scholar 

  139. Adrain C, Murphy BM, Martin SJ (2005) Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. J Biol Chem 280:4663–4673

    PubMed  CAS  Google Scholar 

  140. Waterhouse NJ, Sedelies KA, Trapani JA (2006) Role of Bid-induced mitochondrial outer membrane permeabilization in granzyme B-induced apoptosis. Immunol Cell Biol 84:72–78

    PubMed  CAS  Google Scholar 

  141. Han J, Goldstein LA, Gastman BR, Froelich CJ, Yin XM, Rabinowich H (2004) Degradation of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic events. J Biol Chem 279:22020–22029

    PubMed  CAS  Google Scholar 

  142. Buzza MS, Zamurs L, Sun J, Bird CH, Smith AI, Trapani JA, Froelich CJ, Nice EC, Bird PI (2005) Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280:23549–23558

    PubMed  CAS  Google Scholar 

  143. Pardo J, Wallich R, Ebnet K, Iden S, Zentgraf H, Martin P, Ekiciler A, Prins A, Mullbacher A, Huber M et al (2007) Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin. Cell Death Differ 14:1768–1779

    PubMed  CAS  Google Scholar 

  144. Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6:280–289

    PubMed  Google Scholar 

  145. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    PubMed  CAS  Google Scholar 

  146. Paidassi H, Tacnet-Delorme P, Arlaud GJ, Frachet P (2009) How phagocytes track down and respond to apoptotic cells. Crit Rev Immunol 29:111–130

    PubMed  CAS  Google Scholar 

  147. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  148. Radic M, Marion T, Monestier M (2004) Nucleosomes are exposed at the cell surface in apoptosis. J Immunol 172:6692–6700

    PubMed  CAS  Google Scholar 

  149. Morris RG, Hargreaves AD, Duvall E, Wyllie AH (1984) Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol 115:426–436

    PubMed  CAS  Google Scholar 

  150. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    PubMed  CAS  Google Scholar 

  151. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    PubMed  CAS  Google Scholar 

  152. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211

    PubMed  CAS  Google Scholar 

  153. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–1150

    PubMed  CAS  Google Scholar 

  154. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    PubMed  CAS  Google Scholar 

  155. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    PubMed  CAS  Google Scholar 

  156. Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109:661–670

    PubMed  CAS  Google Scholar 

  157. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    PubMed  CAS  Google Scholar 

  158. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439

    PubMed  CAS  Google Scholar 

  159. Park SY, Jung MY, Kim HJ, Lee SJ, Kim SY, Lee BH, Kwon TH, Park RW, Kim IS (2008) Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 15:192–201

    PubMed  CAS  Google Scholar 

  160. Bose J, Gruber AD, Helming L, Schiebe S, Wegener I, Hafner M, Beales M, Kontgen F, Lengeling A (2004) The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J Biol 3:15

    PubMed  Google Scholar 

  161. Somersan S, Bhardwaj N (2001) Tethering and tickling: a new role for the phosphatidylserine receptor. J Cell Biol 155:501–504

    PubMed  CAS  Google Scholar 

  162. Gardai SJ, Bratton DL, Ogden CA, Henson PM (2006) Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol 79:896–903

    PubMed  CAS  Google Scholar 

  163. Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J (2002) Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418:200–203

    PubMed  CAS  Google Scholar 

  164. Maile LA, Capps BE, Miller EC, Allen LB, Veluvolu U, Aday AW, Clemmons DR (2008) Glucose regulation of integrin-associated protein cleavage controls the response of vascular smooth muscle cells to insulin-like growth factor-I. Mol Endocrinol 22:1226–1237

    PubMed  CAS  Google Scholar 

  165. Guzik K, Bzowska M, Smagur J, Krupa O, Sieprawska M, Travis J, Potempa J (2007) A new insight into phagocytosis of apoptotic cells: proteolytic enzymes divert the recognition and clearance of polymorphonuclear leukocytes by macrophages. Cell Death Differ 14:171–182

    PubMed  CAS  Google Scholar 

  166. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD (1998) Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392:505–509

    PubMed  CAS  Google Scholar 

  167. Sugawara S, Nemoto E, Tada H, Miyake K, Imamura T, Takada H (2000) Proteolysis of human monocyte CD14 by cysteine proteinases (gingipains) from Porphyromonas gingivalis leading to lipopolysaccharide hyporesponsiveness. J Immunol 165:411–418

    PubMed  CAS  Google Scholar 

  168. Nemoto E, Sugawara S, Tada H, Takada H, Shimauchi H, Horiuchi H (2000) Cleavage of CD14 on human gingival fibroblasts cocultured with activated neutrophils is mediated by human leukocyte elastase resulting in down-regulation of lipopolysaccharide-induced IL-8 production. J Immunol 165:5807–5813

    PubMed  CAS  Google Scholar 

  169. Henriksen PA, Devitt A, Kotelevtsev Y, Sallenave JM (2004) Gene delivery of the elastase inhibitor elafin protects macrophages from neutrophil elastase-mediated impairment of apoptotic cell recognition. FEBS Lett 574:80–84

    PubMed  CAS  Google Scholar 

  170. Kantari C, Pederzoli-Ribeil M, Amir-Moazami O, Gausson-Dorey V, Moura IC, Lecomte MC, Benhamou M, Witko-Sarsat V (2007) Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood 110:4086–4095

    PubMed  CAS  Google Scholar 

  171. Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9:62–70

    PubMed  CAS  Google Scholar 

  172. Scannell M, Flanagan MB, deStefani A, Wynne KJ, Cagney G, Godson C, Maderna P (2007) Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J Immunol 178:4595–4605

    PubMed  CAS  Google Scholar 

  173. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG (2008) Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 9:1189–1197

    PubMed  CAS  Google Scholar 

  174. Vong L, D’Acquisto F, Pederzoli-Ribeil M, Lavagno L, Flower RJ, Witko-Sarsat V, Perretti M (2007) Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3. J Biol Chem 282:29998–30004

    PubMed  CAS  Google Scholar 

  175. Pederzoli-Ribeil M, Maione F, Cooper D, Al-Kashi A, Dalli J, Perretti M, D’Acquisto F (2010) Design and characterization of a cleavage-resistant Annexin A1 mutant to control inflammation in the microvasculature. Blood 116:4288–4296

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Witko-Sarsat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Pederzoli-Ribeil, M., Gabillet, J., Witko-Sarsat, V. (2011). Proteases from Inflammatory Cells: Regulation of Inflammatory Response. In: Vergnolle, N., Chignard, M. (eds) Proteases and Their Receptors in Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0157-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0157-7_4

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0156-0

  • Online ISBN: 978-3-0348-0157-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics