Skip to main content

Proteases and Inflammatory Pain

  • Chapter
  • First Online:

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Inflammation mediators are known to signal neurons and provoke pain. In this context, proteases can signal sensory neurons at the site of inflammation and modulate pain transmission. In this chapter, we will perform an overview of the multiple mechanisms whereby proteases can signal nerve endings. Proteases can directly activate proteases activated receptor at the membrane of the nerve endings to modulate pain signaling. They can not only be implicated in the secretion of molecules implicated in pain modulation by the nerve endings such as substance P or CGRP but also by other cell type such as fibroblast able to secrete opioid under protease stimulation. Proteases act on pain signal by cleaving proteins implicated in pain sensation, e.g., kalikreins can convert kininogen in bradykinin which acts on pain modulation. Proteins of nerve can be cleaved by proteases and provoke an increase in pain sensation following inflammation. These different mechanisms are explained in this chapter in the context of inflammatory pain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APN:

AminoPeptidase N

ASIC:

Acid-sensing ion channels

B1R B2R:

Bradykinin receptor 1, 2

BK:

BradyKinin

CCI:

Chronic constriction injury

CD13:

Cluster of differentiation

CGRP:

Calcitonin gene-related peptide

CNS:

Central nervous system

COX:

CycloOXygenase

DAG:

DiAcylGlycerol

DRG:

Dorsal root ganglia

GABA:

Gamma-aminobutyric acid

GCP:

Glutamate carboxypeptidase

HEK:

Human embryonic kidney

IBS:

Irritable Bowel syndrome

IL:

InterLeukin

KLP:

Kallidin-like peptide

LPA:

LysoPhosphAtidic acid

MAG:

Myelin-associated glycoprotein

mGlu:

Metabotropic glutamate

MPO:

MyeloPerOxidase

NAAG:

N-AcetylAspartylGlutamate

NFL:

Neurofilament light chain

NK:

NeuroKinin

NMDA:

N-Methyl-d-aspartic acid

PAR:

Protease-activated receptor

PIP2:

Phosphatidyl Inositol 4,5-bisPhosphate

PKC:

Protein kinase C

PLC:

PhosphoLipase C

PMPA:

Phosphonomethyl pentanedioic acid

SP:

Substance P

TNF:

Tumor necrosis factor

TRP:

Transient receptor potential

TRPA:

Transient receptor potential ankyrin

TRPV:

Transient receptor potential vanilloid

References

  1. Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain (1979) 6:249

    Google Scholar 

  2. Vergnolle N (2009) Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther 123:292–309

    PubMed  CAS  Google Scholar 

  3. Kawabata A, Kawao N, Kuroda R, Tanaka A, Itoh H, Nishikawa H (2001) Peripheral PAR-2 triggers thermal hyperalgesia and nociceptive responses in rats. Neuroreport 12:715–719

    PubMed  CAS  Google Scholar 

  4. Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton S, Grady EF, Cirino G, Gerard N, Basbaum A, Andrade-Gordon P, Hollenberg MD, Wallace JL (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 7:821–826

    PubMed  CAS  Google Scholar 

  5. Salzmann JL, Peltier-Koch F, Bloch F, Petite JP, Camilleri JP (1989) Morphometric study of colonic biopsies: a new method of estimating inflammatory diseases. Lab Invest 60:847–851

    PubMed  CAS  Google Scholar 

  6. Barbara G, Stanghellini V, De GR, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126:693–702

    PubMed  Google Scholar 

  7. Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P, Steinhoff M, Barbara G, Beck P, Bunnett NW, Sharkey KA, Ferraz JG, Shaffer E, Vergnolle N (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 117:636–647

    PubMed  CAS  Google Scholar 

  8. Kerckhoffs AP, Ter Linde JJ, Akkermans LM, Samsom M (2008) Trypsinogen IV, serotonin transporter transcript levels and serotonin content are increased in small intestine of irritable bowel syndrome patients. Neurogastroenterol Motil 20:900–907

    PubMed  CAS  Google Scholar 

  9. Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, Bienenstock J (1987) Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci USA 84:2975–2979

    PubMed  CAS  Google Scholar 

  10. Tam EK, Caughey GH (1990) Degradation of airway neuropeptides by human lung tryptase. Am J Respir Cell Mol Biol 3:27–32

    PubMed  CAS  Google Scholar 

  11. Shanahan F, Denburg JA, Fox J, Bienenstock J, Befus D (1985) Mast cell heterogeneity: effects of neuroenteric peptides on histamine release. J Immunol 135:1331–1337

    PubMed  CAS  Google Scholar 

  12. Oku R, Satoh M, Fujii N, Otaka A, Yajima H, Takagi H (1987) Calcitonin gene-related peptide promotes mechanical nociception by potentiating release of substance P from the spinal dorsal horn in rats. Brain Res 403:350–354

    PubMed  CAS  Google Scholar 

  13. Le Greves P, Nyberg F, Terenius L, Hokfelt T (1985) Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. Eur J Pharmacol 115:309–311

    PubMed  Google Scholar 

  14. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, Smith AJ, Hunter GD, McLean JS, McGarry F, Ramage R, Jiang L, Kanke T, Kawagoe J (2003) Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 111:35–41

    PubMed  CAS  Google Scholar 

  15. McCarson KE, Goldstein BD (1991) Release of substance P into the superficial dorsal horn following nociceptive activation of the hindpaw of the rat. Brain Res 568:109–115

    PubMed  CAS  Google Scholar 

  16. Hua XY, Chen P, Polgar E, Nagy I, Marsala M, Phillips E, Wollaston L, Urban L, Yaksh TL, Webb M (1998) Spinal neurokinin NK1 receptor down-regulation and antinociception: effects of spinal NK1 receptor antisense oligonucleotides and NK1 receptor occupancy. J Neurochem 70:688–698

    PubMed  CAS  Google Scholar 

  17. Koetzner L, Gregory JA, and Yaksh TL (2004) Intrathecal protease-activated receptor stimulation produces thermal hyperalgesia through spinal cyclooxygenase activity. J Pharmacol Exp Ther

    Google Scholar 

  18. Alier KA, Endicott JA, Stemkowski PL, Cenac N, Cellars L, Chapman K, Andrade-Gordon P, Vergnolle N, Smith PA (2008) Intrathecal administration of proteinase-activated receptor-2 agonists produces hyperalgesia by exciting the cell bodies of primary sensory neurons. J Pharmacol Exp Ther 324:224–233

    PubMed  CAS  Google Scholar 

  19. Asfaha S, Brussee V, Chapman K, Zochodne DW, Vergnolle N (2002) Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br J Pharmacol 135:1101–1106

    PubMed  CAS  Google Scholar 

  20. Bar-Shavit R, Kahn A, Wilner G, Fenton J (1983) Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science 220:728–731

    PubMed  CAS  Google Scholar 

  21. Bar-Shavit R, Kahn A, Mudd M, Wilner G, Mann K, Fenton J (1984) Localization of a chemotactic domain in human thrombin. Biochemistry 23:397–400

    PubMed  CAS  Google Scholar 

  22. Herbert J, Dupuy E, Laplace M, Zini J, Bar-Shavit R, Tobelem G (1994) Thrombin induces endothelial cell growth via both a proteolytic and non-proteolytic pathway. Biochem J 303:227–231

    PubMed  CAS  Google Scholar 

  23. Martin L, Auge C, Boue J, Buresi MC, Chapman K, Asfaha S, Andrade-Gordon P, Steinhoff M, Cenac N, Dietrich G, Vergnolle N (2009) Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain 146:121–129

    PubMed  CAS  Google Scholar 

  24. Jaume M, Laffont S, Chapey E, Blanpied C, Dietrich G (2007) Opioid receptor blockade increases the number of lymphocytes without altering T cell response in draining lymph nodes in vivo. J Neuroimmunol 188:95–102

    PubMed  CAS  Google Scholar 

  25. Nissen JB, Kragballe K (1997) Enkephalins modulate differentiation of normal human keratinocytes in vitro. Exp Dermatol 6:222–229

    PubMed  CAS  Google Scholar 

  26. Bottger A, Spruce BA (1995) Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals. J Cell Biol 130:1251–1262

    PubMed  CAS  Google Scholar 

  27. Asfaha S, Cenac N, Houle S, Altier C, Papez MD, Nguyen C, Steinhoff M, Chapman K, Zamponi GW, Vergnolle N (2007) Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. Br J Pharmacol 150:176–185

    PubMed  CAS  Google Scholar 

  28. Auge C, Balz-Hara D, Steinhoff M, Vergnolle N, and Cenac N (2009) Protease-activated receptor-4 (PAR(4)): a role as inhibitor of visceral pain and hypersensitivity, Neurogastroenterol. Motil

    Google Scholar 

  29. Karanjia R, Spreadbury I, Bautista-Cruz F, Tsang ME, Vanner S (2009) Activation of protease-activated receptor-4 inhibits the intrinsic excitability of colonic dorsal root ganglia neurons. Neurogastroenterol Motil 21:1218–1221

    PubMed  CAS  Google Scholar 

  30. Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, Manni C, Geppetti P, McRoberts JA, Ennes H, Davis JB, Mayer EA, Bunnett NW (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24:4300–4312

    PubMed  CAS  Google Scholar 

  31. Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H, Tominaga M, Noguchi K (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24:4293–4299

    PubMed  CAS  Google Scholar 

  32. Dattilio A, Vizzard MA (2005) Up-regulation of protease activated receptors in bladder after cyclophosphamide induced cystitis and colocalization with capsaicin receptor (VR1) in bladder nerve fibers. J Urol 173:635–639

    PubMed  CAS  Google Scholar 

  33. Hoogerwerf WA, Zou L, Shenoy M, Sun D, Micci MA, Lee-Hellmich H, Xiao SY, Winston JH, Pasricha PJ (2001) The proteinase-activated receptor 2 is involved in nociception. J Neurosci 21:9036–9042

    PubMed  CAS  Google Scholar 

  34. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  35. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    PubMed  CAS  Google Scholar 

  36. Kawao N, Shimada C, Itoh H, Kuroda R, Kawabata A (2002) Capsazepine inhibits thermal hyperalgesia but not nociception triggered by protease-activated receptor-2 in rats. Jpn J Pharmacol 89:184–187

    PubMed  CAS  Google Scholar 

  37. Kawao N, Ikeda H, Kitano T, Kuroda R, Sekiguchi F, Kataoka K, Kamanaka Y, Kawabata A (2004) Modulation of capsaicin-evoked visceral pain and referred hyperalgesia by protease-activated receptors 1 and 2. J Pharmacol Sci 94:277–285

    PubMed  CAS  Google Scholar 

  38. Amadesi S, Cottrell GS, Divino L, Chapman K, Grady EF, Bautista F, Karanjia R, Barajas-Lopez C, Vanner S, Vergnolle N, and Bunnett NW (2006) Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C- (epsilon) and A-dependent mechanisms in rats and mice. J Physiol

    Google Scholar 

  39. S. Amadesi, G. S. Cottrell, L. Divino, K. Chapman, E. F. Grady, F. Bautista, R. Karanjia, C. Barajas-Lopez, S. Vanner, N. Vergnolle, and N. W. Bunnett, Protease-activated receptor 2 sensitizes TRPV1 by protein kinase C- (epsilon) and A-dependent mechanisms in rats and mice., J. Physiol, (2006).

    Google Scholar 

  40. Seeliger S, Derian CK, Vergnolle N, Bunnett NW, Nawroth R, Schmelz M, Der Weid PY, Buddenkotte J, Sunderkotter C, Metze D, Andrade-Gordon P, Harms E, Vestweber D, Luger TA, Steinhoff M (2003) Proinflammatory role of proteinase-activated receptor-2 in humans and mice during cutaneous inflammation in vivo. FASEB J 17:1871–1885

    PubMed  CAS  Google Scholar 

  41. Cenac N, Altier C, Chapman K, Liedtke W, Zampon G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135:937–946

    PubMed  CAS  Google Scholar 

  42. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733

    PubMed  CAS  Google Scholar 

  43. F. Cattaruzza, I. Spreadbury, M. Miranda-Morales, E. F. Grady, S. J. Vanner, and N. W. Bunnett, Transient Receptor Potential Ankyrin-1 has a Major Role in Mediating Visceral Pain in Mice, Am. J. Physiol Gastrointest. Liver Physiol, (2009)

    Google Scholar 

  44. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    PubMed  CAS  Google Scholar 

  45. Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, Holtmann G, Liedtke W, Blackshaw LA (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–2069

    PubMed  CAS  Google Scholar 

  46. Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O'Donnell TA, Cooper NJ, Harrington AM, Adam B, Liebregts T, Holtmann G, Corey DP, Rychkov GY, Blackshaw LA (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137:2084–2095

    PubMed  CAS  Google Scholar 

  47. C. Auge, D. Balz-Hara, M. Steinhoff, N. Vergnolle, and N. Cenac, Protease-activated receptor-4 (PAR(4)): a role as inhibitor of visceral pain and hypersensitivity, Neurogastroenterol. Motil., (2009).

    Google Scholar 

  48. Gu Q, Lee LY (2010) Regulation of acid signaling in rat pulmonary sensory neurons by protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 298:L454–L461

    PubMed  CAS  Google Scholar 

  49. Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34:209–220

    PubMed  CAS  Google Scholar 

  50. Passmore GM, Selyanko AA, Mistry M, Al Qatari M, Marsh SJ, Matthews EA, Dickenson AH, Brown TA, Burbidge SA, Main M, Brown DA (2003) KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci 23:7227–7236

    PubMed  CAS  Google Scholar 

  51. Linley JE, Rose K, Patil M, Robertson B, Akopian AN, Gamper N (2008) Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception. J Neurosci 28:11240–11249

    PubMed  CAS  Google Scholar 

  52. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20:4582–4595

    PubMed  CAS  Google Scholar 

  53. Fang M, Kovacs KJ, Fisher LL, Larson AA (2003) Thrombin inhibits NMDA-mediated nociceptive activity in the mouse: possible mediation by endothelin. J Physiol 549:903–917

    PubMed  CAS  Google Scholar 

  54. Ehrenreich H, Costa T, Clouse KA, Pluta RM, Ogino Y, Coligan JE, Burd PR (1993) Thrombin is a regulator of astrocytic endothelin-1. Brain Res 600:201–207

    PubMed  CAS  Google Scholar 

  55. Kamei J, Hitosugi H, Kawashima N, Misawa M, Kasuya Y (1993) Antinociceptive effects of intrathecally administered endothelin-1 in mice. Neurosci Lett 153:69–72

    PubMed  CAS  Google Scholar 

  56. Nikolov R, Semkova I, Maslarova J, Moyanova S (1993) Antinociceptive effect of centrally administered endothelin-1 and endothelin-3 in the mouse. Methods Find Exp Clin Pharmacol 15:447–453

    PubMed  CAS  Google Scholar 

  57. Yaksh TL, Hua XY, Kalcheva I, Nozaki-Taguchi N, Marsala M (1999) The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc Natl Acad Sci USA 96:7680–7686

    PubMed  CAS  Google Scholar 

  58. Kunz S, Niederberger E, Ehnert C, Coste O, Pfenninger A, Kruip J, Wendrich TM, Schmidtko A, Tegeder I, Geisslinger G (2004) The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces thermal hyperalgesia. Pain 110:409–418

    PubMed  CAS  Google Scholar 

  59. Sakaguchi T, Okada M, Kitamura T, Kawasaki K (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153:65–68

    PubMed  CAS  Google Scholar 

  60. Lariviere RC, Julien JP (2004) Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58:131–148

    PubMed  CAS  Google Scholar 

  61. Schlaepfer WW, Lee C, Lee VM, Zimmerman UJ (1985) An immunoblot study of neurofilament degradation in situ and during calcium-activated proteolysis. J Neurochem 44:502–509

    PubMed  CAS  Google Scholar 

  62. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  63. Uceyler N, Tscharke A, Sommer C (2007) Early cytokine expression in mouse sciatic nerve after chronic constriction nerve injury depends on calpain. Brain Behav Immun 21:553–560

    PubMed  CAS  Google Scholar 

  64. Kleinschnitz C, Brinkhoff J, Zelenka M, Sommer C, Stoll G (2004) The extent of cytokine induction in peripheral nerve lesions depends on the mode of injury and NMDA receptor signaling. J Neuroimmunol 149:77–83

    PubMed  CAS  Google Scholar 

  65. Kleinschnitz C, Brinkhoff J, Sommer C, Stoll G (2005) Contralateral cytokine gene induction after peripheral nerve lesions: dependence on the mode of injury and NMDA receptor signaling. Brain Res Mol Brain Res 136:23–28

    PubMed  CAS  Google Scholar 

  66. Xie W, Uchida H, Nagai J, Ueda M, Chun J, Ueda H (2010) Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain. J Neurochem 113:1002–1011

    PubMed  CAS  Google Scholar 

  67. Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116:1111–1162

    PubMed  CAS  Google Scholar 

  68. Dray A, Bevan S (1993) Inflammation and hyperalgesia: highlighting the team effort. Trends Pharmacol Sci 14:287–290

    PubMed  CAS  Google Scholar 

  69. Geppetti P (1993) Sensory neuropeptide release by bradykinin: mechanisms and pathophysiological implications. Regul Pept 47:1–23

    PubMed  CAS  Google Scholar 

  70. Decarie A, Drapeau G, Closset J, Couture R, Adam A (1994) Development of digoxigenin-labeled peptide: application to chemiluminoenzyme immunoassay of bradykinin in inflamed tissues. Peptides 15:511–518

    PubMed  CAS  Google Scholar 

  71. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A (2005) The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 99:6–38

    PubMed  CAS  Google Scholar 

  72. Dray A, Patel IA, Perkins MN, Rueff A (1992) Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol 107:1129–1134

    PubMed  CAS  Google Scholar 

  73. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153

    PubMed  CAS  Google Scholar 

  74. Dray A (1997) Kinins and their receptors in hyperalgesia. Can J Physiol Pharmacol 75:704–712

    PubMed  CAS  Google Scholar 

  75. Couture R, Harrisson M, Vianna RM, Cloutier F (2001) Kinin receptors in pain and inflammation. Eur J Pharmacol 429:161–176

    PubMed  CAS  Google Scholar 

  76. Belichard P, Landry M, Faye P, Bachvarov DR, Bouthillier J, Pruneau D, Marceau F (2000) Inflammatory hyperalgesia induced by zymosan in the plantar tissue of the rat: effect of kinin receptor antagonists. Immunopharmacology 46:139–147

    PubMed  CAS  Google Scholar 

  77. Burgess GM, Perkins MN, Rang HP, Campbell EA, Brown MC, McIntyre P, Urban L, Dziadulewicz EK, Ritchie TJ, Hallett A, Snell CR, Wrigglesworth R, Lee W, Davis C, Phagoo SB, Davis AJ, Phillips E, Drake GS, Hughes GA, Dunstan A, Bloomfield GC (2000) Bradyzide, a potent non-peptide B(2) bradykinin receptor antagonist with long-lasting oral activity in animal models of inflammatory hyperalgesia. Br J Pharmacol 129:77–86

    PubMed  CAS  Google Scholar 

  78. Kaplan AP, Joseph K, Silverberg M (2002) Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol 109:195–209

    PubMed  CAS  Google Scholar 

  79. Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44:1–80

    PubMed  CAS  Google Scholar 

  80. Kakoki M, Smithies O (2009) The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 75:1019–1030

    PubMed  CAS  Google Scholar 

  81. Damas J (1996) The brown Norway rats and the kinin system. Peptides 17:859–872

    PubMed  CAS  Google Scholar 

  82. Ueno A, Oh-ishi S (2003) Roles for the kallikrein-kinin system in inflammatory exudation and pain: lessons from studies on kininogen-deficient rats. J Pharmacol Sci 93:1–20

    PubMed  CAS  Google Scholar 

  83. Kozik A, Moore RB, Potempa J, Imamura T, Rapala-Kozik M, Travis J (1998) A novel mechanism for bradykinin production at inflammatory sites. Diverse effects of a mixture of neutrophil elastase and mast cell tryptase versus tissue and plasma kallikreins on native and oxidized kininogens. J Biol Chem 273:33224–33229

    PubMed  CAS  Google Scholar 

  84. Sato F, Nagasawa S (1989) Kinin release from human LMW-kininogen by the cooperative action of human plasma kallikrein and leukocyte elastase. Adv Exp Med Biol 247A:493–498

    PubMed  CAS  Google Scholar 

  85. Higashiyama S, Ishiguro H, Ohkubo I, Fujimoto S, Matsuda T, Sasaki M (1986) Kinin release from kininogens by calpains. Life Sci 39:1639–1644

    PubMed  CAS  Google Scholar 

  86. Veillard F, Lecaille F, Lalmanach G (2008) Lung cysteine cathepsins: intruders or unorthodox contributors to the kallikrein-kinin system? Int J Biochem Cell Biol 40:1079–1094

    PubMed  CAS  Google Scholar 

  87. C. Antczak, M. De, I, and B. Bauvois, Ectopeptidases in pathophysiology, Bioessays, 23 (2001) 251-260

    Google Scholar 

  88. Lendeckel U, Kahne T, Riemann D, Neubert K, Arndt M, Reinhold D (2000) Review: the role of membrane peptidases in immune functions. Adv Exp Med Biol 477:1–24

    PubMed  CAS  Google Scholar 

  89. Sjostrom H, Noren O, Olsen J (2000) Structure and function of aminopeptidase N. Adv Exp Med Biol 477:25–34

    PubMed  CAS  Google Scholar 

  90. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6

    PubMed  CAS  Google Scholar 

  91. C. Antczak, M. De, I, and B. Bauvois, Transmembrane proteases as disease markers and targets for therapy, J. Biol. Regul. Homeost. Agents, 15 (2001) 130-139

    Google Scholar 

  92. Lendeckel U, Arndt M, Frank K, Wex T, Ansorge S (1999) Role of alanyl aminopeptidase in growth and function of human T cells (review). Int J Mol Med 4:17–27

    PubMed  CAS  Google Scholar 

  93. Giros B, Gros C, Solhonne B, Schwartz JC (1986) Characterization of aminopeptidases responsible for inactivating endogenous (Met5)enkephalin in brain slices using peptidase inhibitors and anti-aminopeptidase M antibodies. Mol Pharmacol 29:281–287

    PubMed  CAS  Google Scholar 

  94. Yamamoto Y, Kanazawa H, Shimamura M, Ueki M, Hazato T (1998) Inhibitory action of spinorphin, an endogenous regulator of enkephalin-degrading enzymes, on carrageenan-induced polymorphonuclear neutrophil accumulation in mouse air-pouches. Life Sci 62:1767–1773

    PubMed  CAS  Google Scholar 

  95. Wang LH, Ahmad S, Benter IF, Chow A, Mizutani S, Ward PE (1991) Differential processing of substance P and neurokinin A by plasma dipeptidyl(amino)peptidase IV, aminopeptidase M and angiotensin converting enzyme. Peptides 12:1357–1364

    PubMed  CAS  Google Scholar 

  96. Robertson MJ, Cunoosamy MP, Clark KL (1992) Effects of peptidase inhibition on angiotensin receptor agonist and antagonist potency in rabbit isolated thoracic aorta. Br J Pharmacol 106:166–172

    PubMed  CAS  Google Scholar 

  97. Ahmad S, Wang L, Ward PE (1992) Dipeptidyl(amino)peptidase IV and aminopeptidase M metabolize circulating substance P in vivo. J Pharmacol Exp Ther 260:1257–1261

    PubMed  CAS  Google Scholar 

  98. Dan H, Tani K, Hase K, Shimizu T, Tamiya H, Biraa Y, Huang L, Yanagawa H, Sone S (2003) CD13/aminopeptidase N in collagen vascular diseases. Rheumatol Int 23:271–276

    PubMed  CAS  Google Scholar 

  99. Hafler DA, Hemler ME, Christenson L, Williams JM, Shapiro HM, Strom TB, Strominger JL, Weiner HL (1985) Investigation of in vivo activated T cells in multiple sclerosis and inflammatory central nervous system diseases. Clin Immunol Immunopathol 37:163–171

    PubMed  CAS  Google Scholar 

  100. Riemann D, Schwachula A, Hentschel M, Langner J (1993) Demonstration of CD13/aminopeptidase N on synovial fluid T cells from patients with different forms of joint effusions. Immunobiology 187:24–35

    PubMed  CAS  Google Scholar 

  101. Shimizu T, Tani K, Hase K, Ogawa H, Huang L, Shinomiya F, Sone S (2002) CD13/aminopeptidase N-induced lymphocyte involvement in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 46:2330–2338

    PubMed  CAS  Google Scholar 

  102. Boué Jérôme, Blanpied Catherine, Brousset Pierre, Vergnolle Nathalie, and Dietrich Gilles, Endogenous opioid-mediated analgesia is dependent on adaptive T cell response in mice, J Immunol, (2011)

    Google Scholar 

  103. Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26:88–130

    PubMed  CAS  Google Scholar 

  104. Fournie-Zaluski MC, Chaillet P, Bouboutou R, Coulaud A, Cherot P, Waksman G, Costentin J, Roques BP (1984) Analgesic effects of kelatorphan, a new highly potent inhibitor of multiple enkephalin degrading enzymes. Eur J Pharmacol 102:525–528

    PubMed  CAS  Google Scholar 

  105. Fournie-Zaluski MC, Coric P, Turcaud S, Lucas E, Noble F, Maldonado R, Roques BP (1992) “Mixed inhibitor-prodrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J Med Chem 35:2473–2481

    PubMed  CAS  Google Scholar 

  106. Neale JH, Olszewski RT, Gehl LM, Wroblewska B, Bzdega T (2005) The neurotransmitter N-acetylaspartylglutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia. Trends Pharmacol Sci 26:477–484

    PubMed  CAS  Google Scholar 

  107. Wroblewska B, Wroblewski JT, Pshenichkin S, Surin A, Sullivan SE, Neale JH (1997) N-acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J Neurochem 69:174–181

    PubMed  CAS  Google Scholar 

  108. Zhao J, Ramadan E, Cappiello M, Wroblewska B, Bzdega T, Neale JH (2001) NAAG inhibits KCl-induced [(3)H]-GABA release via mGluR3, cAMP, PKA and L-type calcium conductance. Eur J Neurosci 13:340–346

    PubMed  CAS  Google Scholar 

  109. Sanabria ER, Wozniak KM, Slusher BS, Keller A (2004) GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism. J Neurophysiol 91:182–193

    PubMed  Google Scholar 

  110. Bzdega T, Turi T, Wroblewska B, She D, Chung HS, Kim H, Neale JH (1997) Molecular cloning of a peptidase against N-acetylaspartylglutamate from a rat hippocampal cDNA library. J Neurochem 69:2270–2277

    PubMed  CAS  Google Scholar 

  111. Bzdega T, Crowe SL, Ramadan ER, Sciarretta KH, Olszewski RT, Ojeifo OA, Rafalski VA, Wroblewska B, Neale JH (2004) The cloning and characterization of a second brain enzyme with NAAG peptidase activity. J Neurochem 89:627–635

    PubMed  CAS  Google Scholar 

  112. Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93:749–753

    PubMed  CAS  Google Scholar 

  113. Luthi-Carter R, Berger UV, Barczak AK, Enna M, Coyle JT (1998) Isolation and expression of a rat brain cDNA encoding glutamate carboxypeptidase II. Proc Natl Acad Sci USA 95:3215–3220

    PubMed  CAS  Google Scholar 

  114. Sharpe EF, Kingston AE, Lodge D, Monn JA, Headley PM (2002) Systemic pre-treatment with a group II mGlu agonist, LY379268, reduces hyperalgesia in vivo. Br J Pharmacol 135:1255–1262

    PubMed  CAS  Google Scholar 

  115. Yang D, Gereau RW (2002) Peripheral group II metabotropic glutamate receptors (mGluR2/3) regulate prostaglandin E2-mediated sensitization of capsaicin responses and thermal nociception. J Neurosci 22:6388–6393

    PubMed  CAS  Google Scholar 

  116. Yamamoto T, Nozaki-Taguchi N, Sakashita Y (2001) Spinal N-acetyl-alpha-linked acidic dipeptidase (NAALADase) inhibition attenuates mechanical allodynia induced by paw carrageenan injection in the rat. Brain Res 909:138–144

    PubMed  CAS  Google Scholar 

  117. Yamamoto T, Nozaki-Taguchi N, Sakashita Y, Inagaki T (2001) Inhibition of spinal N-acetylated-alpha-linked acidic dipeptidase produces an antinociceptive effect in the rat formalin test. Neuroscience 102:473–479

    PubMed  CAS  Google Scholar 

  118. Yamamoto T, Hirasawa S, Wroblewska B, Grajkowska E, Zhou J, Kozikowski A, Wroblewski J, Neale JH (2004) Antinociceptive effects of N-acetylaspartylglutamate (NAAG) peptidase inhibitors ZJ-11, ZJ-17 and ZJ-43 in the rat formalin test and in the rat neuropathic pain model. Eur J Neurosci 20:483–494

    PubMed  Google Scholar 

  119. Kozikowski AP, Zhang J, Nan F, Petukhov PA, Grajkowska E, Wroblewski JT, Yamamoto T, Bzdega T, Wroblewska B, Neale JH (2004) Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents. J Med Chem 47:1729–1738

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Cenac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Cenac, N. (2011). Proteases and Inflammatory Pain. In: Vergnolle, N., Chignard, M. (eds) Proteases and Their Receptors in Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0157-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0157-7_11

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0156-0

  • Online ISBN: 978-3-0348-0157-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics