Skip to main content

Inflammasome Activation by Pathogenic Crystals and Particles

  • Chapter
  • First Online:
The Inflammasomes

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The NLRP3 inflammasome is a multiprotein complex that controls processing and secretion of bioactive IL-1β and IL-18, powerful proinflammatory cytokines involved in several human diseases. The NLRP3 inflammasome is activated by pathogens, danger signals released by necrotic cells, and crystals and particles of varied size and structure. These inflammasome-activating particles have a causative role in human diseases such as gout, asbestosis, silicosis, and Alzheimer’s, or are useful as vaccine adjuvants, like in the case of alum. The molecular aspects involved in activation of the NLRP3 inflammasome by particles are being rapidly elucidated and emphasize the importance of phagocytosis, K+ efflux, and generation of reactive oxygen species in this process. Here, the recent literature is reviewed and important questions to be answered in the future are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  PubMed  CAS  Google Scholar 

  2. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  PubMed  CAS  Google Scholar 

  3. Popa-Nita O, Naccache PH (2010) Crystal-induced neutrophil activation. Immunol Cell Biol 88:32–40

    Article  PubMed  CAS  Google Scholar 

  4. Di Giovine FS, Malawista SE, Nuki G, Duff GW (1987) Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J Immunol 138:3213–3218

    PubMed  Google Scholar 

  5. Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, Akira S, Rock KL (2006) MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116:2262–2271

    Article  PubMed  CAS  Google Scholar 

  6. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  PubMed  CAS  Google Scholar 

  7. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  PubMed  CAS  Google Scholar 

  8. Li H, Nookala S, Re F (2007) Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J Immunol 178:5271–5276

    PubMed  CAS  Google Scholar 

  9. Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181:17–21

    PubMed  CAS  Google Scholar 

  10. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    Article  PubMed  CAS  Google Scholar 

  11. Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181:3755–3759

    PubMed  CAS  Google Scholar 

  12. Franchi L, Nunez G (2008) The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol 38:2085–2089

    Article  PubMed  CAS  Google Scholar 

  13. Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O’Hagan DT, Petrilli V, Tschopp J et al (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 106:870–875

    Article  PubMed  CAS  Google Scholar 

  14. Schins RP (2002) Mechanisms of genotoxicity of particles and fibers. Inhal Toxicol 14:57–78

    Article  PubMed  CAS  Google Scholar 

  15. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  PubMed  CAS  Google Scholar 

  16. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA, Sutterwala FS (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040

    Article  PubMed  CAS  Google Scholar 

  17. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  PubMed  CAS  Google Scholar 

  18. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  PubMed  CAS  Google Scholar 

  19. Dostert C, Guarda G, Romero JF, Menu P, Gross O, Tardivel A, Suva ML, Stehle JC, Kopf M, Stamenkovic I et al (2009) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4:e6510

    Article  PubMed  Google Scholar 

  20. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A, Flavell RA et al (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5:e1000559

    Article  PubMed  Google Scholar 

  21. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N et al (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201:19–25

    Article  PubMed  CAS  Google Scholar 

  22. Caicedo MS, Desai R, McAllister K, Reddy A, Jacobs JJ, Hallab NJ (2009) Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res 27:847–854

    Article  PubMed  CAS  Google Scholar 

  23. Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88

    Article  PubMed  CAS  Google Scholar 

  24. So A, De Smedt T, Revaz S, Tschopp J (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 9:R28

    Article  PubMed  Google Scholar 

  25. McGonagle D, Tan AL, Shankaranarayana S, Madden J, Emery P, McDermott MF (2007) Management of treatment resistant inflammation of acute on chronic tophaceous gout with anakinra. Ann Rheum Dis 66:1683–1684

    Article  PubMed  CAS  Google Scholar 

  26. Terkeltaub R, Tenner AJ, Kozin F, Ginsberg MH (1983) Plasma protein binding by monosodium urate crystals. Analysis by two-dimensional gel electrophoresis. Arthritis Rheum 26:775–783

    Article  PubMed  CAS  Google Scholar 

  27. Ramanathan VD, Badenoch-Jones P, Turk JL (1979) Complement activation by aluminium and zirconium compounds. Immunology 37:881–888

    PubMed  CAS  Google Scholar 

  28. Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA, Schoel WM, Li T, Lowell CA, Ling CC, Amrein MW et al (2008) Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29:807–818

    Article  PubMed  CAS  Google Scholar 

  29. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  PubMed  CAS  Google Scholar 

  30. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300

    Article  PubMed  CAS  Google Scholar 

  31. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497

    Article  PubMed  CAS  Google Scholar 

  32. Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581

    Article  PubMed  CAS  Google Scholar 

  33. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  34. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  PubMed  CAS  Google Scholar 

  35. Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol 286:C1100–C1108

    Article  PubMed  CAS  Google Scholar 

  36. Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HM, Dixit VM (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187:61–70

    Article  PubMed  CAS  Google Scholar 

  37. Li H, Ambade A, Re F (2009) Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol 183(3):1528–1532

    Article  PubMed  CAS  Google Scholar 

  38. Hsu LC, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW, Eckmann L, Powell JJ, Nizet V, Dixit VM et al (2008) A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105:7803–7808

    Article  PubMed  CAS  Google Scholar 

  39. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM (2001) Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 276:41985–41990

    Article  PubMed  CAS  Google Scholar 

  40. Arlehamn CS, Petrilli V, Gross O, Tschopp J, Evans TJ (2010) The role of potassium in inflammasome activation by bacteria. J Biol Chem 285(14):10508–10518

    Article  PubMed  CAS  Google Scholar 

  41. Scheel O, Papavlassopoulos M, Blunck R, Gebert A, Hartung T, Zahringer U, Seydel U, Schromm AB (2006) Cell activation by ligands of the toll-like receptor and interleukin-1 receptor family depends on the function of the large-conductance potassium channel MaxiK in human macrophages. Infect Immun 74:4354–4356

    Article  PubMed  CAS  Google Scholar 

  42. Fay AJ, Qian X, Jan YN, Jan LY (2006) SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc Natl Acad Sci USA 103:17548–17553

    Article  PubMed  CAS  Google Scholar 

  43. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    Article  PubMed  CAS  Google Scholar 

  44. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  45. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443

    Article  PubMed  CAS  Google Scholar 

  46. Shirahama T, Cohen AS (1974) Ultrastructural evidence for leakage of lysosomal contents after phagocytosis of monosodium urate crystals. A mechanism of gouty inflammation. Am J Pathol 76:501–520

    PubMed  CAS  Google Scholar 

  47. Harder J, Franchi L, Munoz-Planillo R, Park JH, Reimer T, Nunez G (2009) Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol 183:5823–5829

    Article  PubMed  CAS  Google Scholar 

  48. Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE (2008) The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47:1495–1503

    Article  PubMed  CAS  Google Scholar 

  49. Zhao M, Antunes F, Eaton JW, Brunk UT (2003) Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem 270:3778–3786

    Article  PubMed  CAS  Google Scholar 

  50. Willingham SB, Bergstralh DT, O’Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M et al (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–159

    Article  PubMed  CAS  Google Scholar 

  51. Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, Olsen BR (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 99:7883–7888

    Article  PubMed  CAS  Google Scholar 

  52. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436

    Article  PubMed  CAS  Google Scholar 

  53. Desaulniers P, Fernandes M, Gilbert C, Bourgoin SG, Naccache PH (2001) Crystal-induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals. J Leukoc Biol 70:659–668

    PubMed  CAS  Google Scholar 

  54. Van Ziffle JA, Lowell CA (2009) Neutrophil-specific deletion of Syk kinase results in reduced host defense to bacterial infection. Blood 114:4871–4882

    Article  PubMed  Google Scholar 

  55. Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL, Miller YI (2009) Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res 104:210–218, 221

    Article  PubMed  CAS  Google Scholar 

  56. Hamilton RF Jr, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials’ toxicity and bioactivity. Part Fibre Toxicol 6:35

    Article  PubMed  Google Scholar 

  57. Fam AG, Schumacher HR Jr, Clayburne G, Sieck M, Mandel NS, Cheng PT, Pritzker KP (1992) A comparison of five preparations of synthetic monosodium urate monohydrate crystals. J Rheumatol 19:780–787

    PubMed  CAS  Google Scholar 

  58. McGill NW, Hayes A, Dieppe PA (1992) Morphological evidence for biological control of urate crystal formation in vivo and in vitro. Scand J Rheumatol 21:215–219

    Article  PubMed  CAS  Google Scholar 

  59. Kanevets U, Sharma K, Dresser K, Shi Y (2009) A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol 182:1912–1918

    Article  PubMed  CAS  Google Scholar 

  60. Adachi S, Yoshida S, Kawamura K, Takahashi M, Uchida H, Odagiri Y, Takemoto K (1994) Inductions of oxidative DNA damage and mesothelioma by crocidolite, with special reference to the presence of iron inside and outside of asbestos fiber. Carcinogenesis 15:753–758

    Article  PubMed  CAS  Google Scholar 

  61. Franchi L, Eigenbrod T, Nunez G (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183:792–796

    Article  PubMed  CAS  Google Scholar 

  62. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  PubMed  CAS  Google Scholar 

  63. Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R (2005) Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 52:2936–2946

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Re .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Re, F. (2011). Inflammasome Activation by Pathogenic Crystals and Particles. In: Couillin, I., Pétrilli, V., Martinon, F. (eds) The Inflammasomes. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0148-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0148-5_6

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0147-8

  • Online ISBN: 978-3-0348-0148-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics