Skip to main content

Random Complex Fewnomials, I

  • Chapter
  • First Online:
Notions of Positivity and the Geometry of Polynomials

Part of the book series: Trends in Mathematics ((TM))

Abstract

We introduce several notions of ‘random f-nomials’, i.e., random polynomials with a fixed number f of monomials of degree = ≤N The f exponents are chosen at random and then the coefficients are chosen to be Gaussian random, mainly from the SU(m + 1) ensemble. The results give limiting formulas as N→∞ for the (normalized) expected distribution of complex zeros of a system of k random f-nomials in m variables (km). When k = m, for SU(m+ 1) polynomials, the limit is the Monge-Ampère measure of a toric Kähler potential on ℂℙm obtained by averaging a ‘discrete Legendre transform’ of the Fubini-Study symplectic potential at f points of the unit simplex ∑ ⊂ ℝ

Mathematics Subject Classification (2000). Primary 32A60,60D05; Secondary 12D10, 14Q99.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Bates, F. Bihan and F. Sottile, Bounds on the number of real solutions to polynomial equations. Int. Math. Res. Not. 2007, no. 23, Art. ID rnm114, 7 pp.

    Google Scholar 

  2. E. Bedford and B.A. Taylor, A new capacity for plurisubharmonic functions. Acta Math. 149 (1982), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.N. Bernstein, The number of roots of a system of equations. Functional Anal. Appl. 9 (1975), 183–185.

    Article  Google Scholar 

  4. F. Bihan, J.M. Rojas and F. Sottile, On the sharpness of fewnomial bounds and the number of components of fewnomial hypersurfaces. Algorithms in algebraic geometry, 15–20, IMA Vol. Math. Appl., 146, Springer, New York, 2008.

    Google Scholar 

  5. P. Bleher and X. Di, Correlations between zeros of a random polynomial. J. Stat. Phys. 88 (1997), 269–305.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Bloom and B. Shiffman, Zeros of random polynomials on ℂm. Math. Res. Lett. 14 (2007), 469–479.

    MathSciNet  MATH  Google Scholar 

  7. P. Bürgisser, Average Euler characteristic of random real algebraic varieties. C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 507–512.

    MathSciNet  MATH  Google Scholar 

  8. D. Gayet and J.-Y.Welschinger, Exponential rarefaction of real curves with many components (arXiv:1005.3228v1). To appear in Pub. IHES.

    Google Scholar 

  9. J.M. Hammersley, The zeros of a random polynomial. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 19541955, vol. II, 89–111, University of California Press, Berkeley and Los Angeles, 1956.

    Google Scholar 

  10. B. Ya. Kazarnovskii, On zeros of exponential sums. (Russian) Dokl. Akad. Nauk SSSR 257 (1981), no. 4, 804–808.

    MathSciNet  Google Scholar 

  11. B. Ya. Kazarnovskii, Newton polyhedra and roots of systems of exponential sums. (Russian) Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 40–49, 96.

    MathSciNet  Google Scholar 

  12. A.G. Khovanskii, Fewnomials, Trans. Math Monographs 88, AMS Publications, Providence, RI, 1991.

    Google Scholar 

  13. M. Klimek, Pluripotential Theory, London Math. Soc. Monographs, New Series 6, Oxford University Press, New York, 1991.

    Google Scholar 

  14. A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor. Invent. Math. 32 (1976), 1–31.

    Article  MathSciNet  Google Scholar 

  15. J.M. Rojas, On the average number of real roots of certain random sparse polynomial systems. The mathematics of numerical analysis (Park City, UT, 1995), 689–699, Lectures in Appl. Math. 32, Amer. Math. Soc., Providence, RI, 1996.

    Google Scholar 

  16. B. Shiffman, T. Tate and S. Zelditch, Distribution laws for integrable eigenfunctions. Ann. Inst. Fourier 54 (2004), no. 5, 1497–1546.

    MathSciNet  MATH  Google Scholar 

  17. B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles. Comm. Math. Phys. 200 (1999), 661–683.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Shiffman and S. Zelditch, Random polynomials with prescribed Newton polytope. J. Amer. Math. Soc. 17 (2004), no. 1, 49–108.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Shiffman and S. Zelditch, Number variance of random zeros on complex manifolds. Geom. Funct. Anal. 18, No. 4 (2008), 1422–1475.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Shiffman, S. Zelditch and Q. Zhong, Random zeros on complex manifolds: conditional expectations. J. Inst. Math. Jussieu 10 (2011), 753–783.

    Article  MATH  Google Scholar 

  21. M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities. Computational algebraic geometry (Nice, 1992), 267–285, Progr. Math., 109, Birkhäuser Boston, Boston, MA, 1993.

    Google Scholar 

  22. J. Song and S. Zelditch, Convergence of Bergman geodesics on CP 1. Ann. Inst. Fourier 57, no. 6 (Festival Colin de Verdière) (2007), 2209–2237.

    Google Scholar 

  23. J. Song and S. Zelditch, Bergman metrics and geodesics in the space of Kähler metrics on toric varieties. Analysis & PDE 3, No. 2 (2010), 295–358.

    Article  MathSciNet  Google Scholar 

  24. J. Song and S. Zelditch, Test configurations, large deviations and geodesic rays on toric varieties (arXiv:0712.3599).

    Google Scholar 

  25. F. Sottile, Enumerative real algebraic geometry. Algorithmic and quantitative real algebraic geometry (Piscataway, NJ, 2001), 139–179, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 60, Amer. Math. Soc., Providence, RI, 2003.

    Google Scholar 

  26. B. Sturmfels, On the number of real roots of a sparse polynomial system. Hamiltonian and gradient flows, algorithms and control, Fields Inst. Commun. 3, Amer. Math. Soc., Providence, RI, 1994, pp. 137–143.

    Google Scholar 

  27. B. Sturmfels, Polynomial equations and convex polytopes. Amer. Math. Monthly 105 (1998), no. 10, 907–922.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Shiffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Shiffman, B., Zelditch, S. (2011). Random Complex Fewnomials, I. In: Brändén, P., Passare, M., Putinar, M. (eds) Notions of Positivity and the Geometry of Polynomials. Trends in Mathematics. Springer, Basel. https://doi.org/10.1007/978-3-0348-0142-3_20

Download citation

Publish with us

Policies and ethics