Skip to main content

Matrix Weyl Functions and Non-Abelian Coxeter-Toda Lattices

  • Chapter
  • First Online:
Notions of Positivity and the Geometry of Polynomials

Part of the book series: Trends in Mathematics ((TM))

Abstract

We introduce a family of non-Abelian nonlinear lattices that generalize Coxeter-Toda lattices in GL n and show that matrix Weyl functions can be used to encode the Hamiltonian structure of these lattices, to establish their complete integrability and to explicitly solve them via the matrix generalization of the inverse moment problem.

Mathematics Subject Classification (2000). Primary 47B36; Secondary 37K10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Atiyah, N. Hitchin, The Geometry and Dynamics of Magnetic Monopoles. M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988.

    MATH  Google Scholar 

  2. A. Berenstein, V. Retakh, Noncommutative double Bruhat cells and their factorizations, Int. Math. Res. Not. 2005, no. 8, 477–516.

    Google Scholar 

  3. J. Borcea, P. Brändén, Applications of stable polynomials to mixed determinants: Johnson’s conjectures, unimodality, and symmetrized Fischer products, Duke Math. J. 143 (2008), no. 2, 205–223.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Borcea, B. Shapiro, Root asymptotics of spectral polynomials for the Lamé operator, Comm. Math. Phys. 282 (2008), no. 2, 323–337.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bruschi, S.V. Manakov, O. Ragnisco, D. Levi, The nonabelian Toda lattice (discrete analogue of the matrix Schrödinger spectral problem), J. Math. Phys. 21 (1980) 2749–2753.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Di Francesco, R. Kedem, Q-systems, heaps, paths and cluster positivity, Comm. Math. Phys. 293 (2010), no. 3, 727–802.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Di Francesco, R. Kedem, Noncommutative integrability, paths and quasi-determinants, arXiv:1006.4774.

    Google Scholar 

  8. P. Etingof, I.M. Gelfand, V. Retakh,Factorization of differential operators, quasideterminants, and nonabelian Toda field equations Math. Res. Lett. 4 (1997) 413–425.

    MathSciNet  MATH  Google Scholar 

  9. L. Faddeev, L. Takhtajan, Hamiltonian Methods in the Theory of Solitons. Springer, 2007.

    Google Scholar 

  10. L. Faybusovich, M.I. Gekhtman, Elementary Toda orbits and integrable lattices. J. Math. Phys. 41 (2000), 2905–2921.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Faybusovich, M.I. Gekhtman, Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices. Phys. Lett. A 272 (2000), 236–244.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Faybusovich, M.I. Gekhtman, Inverse moment problem for elementary co-adjoint orbits. Inverse Problems 17 (2001), 1295–1306.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Gekhtman, Integration of non-Abelian Toda-type chains, Funct. Anal. Appl. 24 (3) (1991) 231–233.

    Article  MathSciNet  Google Scholar 

  14. M. Gekhtman, Hamiltonian Structures of Non-Abelian Toda Lattice, Lett. Math. Phys.46 (1998), 189–205.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Gekhtman, M. Shapiro, A. Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, ActaMathematica, in press, arXiv:0906.1364.

    Google Scholar 

  16. T. Hoffmann, J. Kellendonk, N. Kutz, and N. Reshetikhin, Factorization dynamics and Coxeter–Toda lattices, Comm. Math. Phys. 212 (2000), 297–321.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kharchev, A. Mironov, and A. Zhedanov, Faces of relativistic Toda chain, Int. J. Mod. Phys. A 12 (1997), 2675–2724.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math. 34 (1979), 195–338.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Krichever, The periodic nonabelian Toda chain and its two-dimensional generalization, Russ. Math. Surveys 36 (1981) 32–81.

    MathSciNet  Google Scholar 

  20. J. Moser, Finitely many mass points on the line under the influence of the exponential potential – an integrable system, in: Dynamical systems, theory and applications, 467–497, Lecture Notes in Physics 38, Springer, Berlin, 1975.

    Google Scholar 

  21. M. Shmoish, On generalized spectral functions, the parametrization of block Hankel and block Jacobi matrices, and some root location problems, Linear Algebra Appl. 202 (1994), 91–128.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Symes, Systems of Toda type, inverse spectral problems, and representation theory, Invent. Math. 59 (1980), 13–51.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gekhtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Gekhtman, M., Korovnichenko, O. (2011). Matrix Weyl Functions and Non-Abelian Coxeter-Toda Lattices. In: Brändén, P., Passare, M., Putinar, M. (eds) Notions of Positivity and the Geometry of Polynomials. Trends in Mathematics. Springer, Basel. https://doi.org/10.1007/978-3-0348-0142-3_12

Download citation

Publish with us

Policies and ethics