Skip to main content

The Pressure, Densities and First-order Phase Transitions Associated with Multidimensional SOFT

  • Chapter
  • First Online:
Notions of Positivity and the Geometry of Polynomials

Part of the book series: Trends in Mathematics ((TM))

Abstract

We study theoretical and computational properties of the pressure function for subshifts of finite type on the integer lattice ℤd, multidimensional SOFT, which are called Potts models in mathematical physics. We give computable upper and lower bounds for the pressure, which can be arbitrary close to the values of the pressure given a sufficient computational power. We apply our numerical methods to confirm Baxter’s heuristic computations for two-dimensional monomer-dimer model, and to compute the pressure and the entropy density as functions of two variables for the two-dimensional monomer-dimer model. The novelty of our approach is in avoiding the use of Gibbs measures.

Mathematics Subject Classification (2000). 05A16, 28D20, 37M25, 82B20, 82B26.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for Z d-actions, Comm. Math. Phys. 164 (1994), 433–454.

    Article  MathSciNet  MATH  Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics, Spinger, New York, 1978.

    MATH  Google Scholar 

  3. H. Au-Yang and J.H.H. Perk, Phys. Lett. A 104 (1984), 131–134.

    Article  MathSciNet  Google Scholar 

  4. R.J. Baxter, Dimers on a rectangular lattice, J. Math. Phys. 9 (1968), 650–654.

    Article  Google Scholar 

  5. R.J. Baxter, Hard hexagons: exact solution, J. Phys. A: Math. Gen. 13 (1980), L61–L70.

    Article  MathSciNet  Google Scholar 

  6. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982.

    MATH  Google Scholar 

  7. F. Comets, Detecting phase transition for Gibbs measures Ann. Appl. Probab. 7 (1997), 545–563.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.E. Ellis, K. Haven and B. Turkington, Large deviation principles and complete equivalence and nonequivalence for pure and mixed ensembles, Journal of Statistical Physics 101 (2000), 999–1064.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev. 124 (1961), 1664–1672.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Friedland, On the entropy of Z-d subshifts of finite type, Linear Algebra Appl. 252 (1997), 199–220.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Friedland, Multi-dimensional capacity, pressure and Hausdorff dimension, in Mathematical System Theory in Biology, Communication, Computation and Finance, edited by J. Rosenthal and D. Gilliam, IMA Vol. Ser. 134, Springer, New York, 2003, 183–222.

    Google Scholar 

  12. S. Friedland, E. Krop, P.H. Lundow and K. Markström, On the validations of the asymptotic matching conjectures, J. Stat. Phys. 133 (2008), 513–533.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Friedland and U.N. Peled, Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem, Advances of Applied Math. 34 (2005), 486–522.

    Article  MathSciNet  MATH  Google Scholar 

  14. F.R. Gantmacher, The Theory of Matrices, Vol. II, Chelsea Publ. Co., New York 1959.

    MATH  Google Scholar 

  15. H.-O. Georgii, Gibbs Measures and Phase Transitions, Walter de Gruyter, Berlin, 1988.

    Book  MATH  Google Scholar 

  16. R.B. Griffiths, Rigorous results and theorems, in Phase Transition and Critical Phenomena, edited by C. Domb and M.S. Green, pp. 7–109, Academic Press, 1972.

    Google Scholar 

  17. J.M. Hammersley, Existence theorems and Monte Carlo methods for the monomerdimer problem, in Reseach papers in statistics: Festschrift for J. Neyman, edited by F.N. David, Wiley, London, 1966, 125–146.

    Google Scholar 

  18. J.M. Hammersley and V. Menon, A lower bound for the monomer-dimer problem, J. Inst. Math. Appl. 6 (1970), 341–364.

    Article  MathSciNet  MATH  Google Scholar 

  19. O.J. Heilman and E.H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972), 190–232; Errata 27 (1972), 166.

    Article  MathSciNet  Google Scholar 

  20. E. Ising, Beitrag zur Theory des Ferromagnetismus, Z. Physik 31 (1925), 253–258.

    Article  Google Scholar 

  21. R.B. Israel, Convexity in the Theory of Lattice Gases, Princeton Series in Physics. Princeton U.P., Princeton, New Jersey, 1978.

    Google Scholar 

  22. P.W. Kasteleyn, The statistics of dimers on a lattice, Physica 27 (1961), 1209–1225.

    Article  Google Scholar 

  23. J.F.C. Kingman, A convexity property of positive matrices. Quart. J. Math. Oxford Ser. (2) 12 (1961), 283–284.

    Article  MathSciNet  MATH  Google Scholar 

  24. E.H. Lieb, Residual entropy of square ice, Phys. Review 162 (1967), 162–172.

    Article  Google Scholar 

  25. P.H. Lundow, Compression of transfer matrices, Discrete Math. 231 (2001), 321–329.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Onsager, Cristal statistics, I. A two-dimensional model with an order-disorder transition, Phys. Review 65 (1944), 117–149.

    Article  MATH  Google Scholar 

  27. R. Peierles, On Ising model of ferrogmanetism, Proc. Cambridge Phil. Soc. 32 (1936), 477–481.

    Article  Google Scholar 

  28. R.B. Potts, Some generalized order-disorder transformations, Math. Proc. Cambridge Philos. Soc. 48 (1952), 106–109.

    Article  MathSciNet  MATH  Google Scholar 

  29. R.T. Rockafeller, Convex Analysis, Princeton Univ. Press 1970.

    Google Scholar 

  30. D. Ruelle, Thermodynamic Formalism, 2nd Edition, Cambridge Mathematical Library, 2004.

    Google Scholar 

  31. K. Schmidt, Algebraic Ideas in Ergodic Theory, Amer. Math. Soc., 1990.

    Google Scholar 

  32. H.N.V. Temperley and M.E. Fisher, Dimer problem in statistical mechanics – an exact result, Phil. Mag . ( 8 )6 (1961), 1061–1063.

    Article  MathSciNet  MATH  Google Scholar 

  33. C.J. Thompson, Mathematical Statisitical Mechanics, Princeton Univ. Press, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Friedland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Friedland, S., Peled, U.N. (2011). The Pressure, Densities and First-order Phase Transitions Associated with Multidimensional SOFT. In: Brändén, P., Passare, M., Putinar, M. (eds) Notions of Positivity and the Geometry of Polynomials. Trends in Mathematics. Springer, Basel. https://doi.org/10.1007/978-3-0348-0142-3_11

Download citation

Publish with us

Policies and ethics