Skip to main content

Random Modeling of Adaptive Dynamics and Evolutionary Branching

  • Chapter
  • First Online:
The Mathematics of Darwin’s Legacy

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

We are interested in modeling the Darwinian dynamics of a polymorphic asexual population, as driven by the interplay of phenotypic variation and natural selection through ecological interactions. Our modeling is based on a stochastic individual-based model that details the dynamics of heritable traits characterizing each individual. We consider the specific scales of the biological framework of adaptive dynamics: rare mutations and large population. We prove that under a good combination of these two scales, the population process is approximated in an evolution long time scale by a Markov pure jump process describing successive equilibria of the population. Then we consider this polymorphic evolution process in the limit of small mutations. From a fine study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching.

Mathematics Subject Classification (2000). 92D25, 60J80, 37N25, 92D15, 60J75.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection. London Mathematical Society Student Texts, 7. Cambridge University Press, U,K., 1988.

    Google Scholar 

  2. P. Marrow, R. Law, and C. Cannings, The coevolution of predator prey interactions – ESSs and Red Queen dynamics. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 250 (1992), 133–141.

    Article  Google Scholar 

  3. J.A.J. Metz, R.M. Nisbet, and S.A.H. Geritz, How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol. 7 (1992), 198–202.

    Article  Google Scholar 

  4. N. Fournier and S. M´el´eard, A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14 (2004), 1880–1919.

    Google Scholar 

  5. N. Champagnat, R. Ferri`ere, and S. M´el´eard, From individual stochastic processes to macroscopic models in adaptive evolution. Stoch. Models 24 (2008), 2–44, 9th Symposium on Probability and Stochastic Process, Guanajuato, Mexico, Nov. 20– 24, 2006.

    Google Scholar 

  6. N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Their Appl. 116 (2006), 1127–1160.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Champagnat and S. M´el´eard, Polymorphic evolution sequence and evolutionary branching (to appear), Probab. Theory Relat. Fields.

    Google Scholar 

  8. U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation. Nature 400 (1999), 354–357.

    Article  Google Scholar 

  9. J.A.J. Metz, S.A.H. Geritz, G. Mesz´ena, F.J.A. Jacobs, and J.S. van Heerwaarden, Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems (Amsterdam,1995), Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, 183– 231, North-Holland, Amsterdam, 1996.

    Google Scholar 

  10. O. Diekmann, P.E. Jabin, S. Mischler, and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67 (2005), 257–271.

    Article  MATH  Google Scholar 

  11. G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. In D. Danielli (ed.), Recent Developments in Nonlinear Partial Differential Equations, volume 439 of Contemporary Mathematics Series, 57–68, 2007.

    Google Scholar 

  12. A. Bovier and N. Champagnat, Time scales in adaptive dynamics: directional selection, fast and slow branching. (in preparation).

    Google Scholar 

  13. F. Yu, Stationary distributions of a model of sympatric speciation. Ann. Appl. Probab. 17 (2007), 840–874.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Bolker and S.W. Pacala, Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52 (1997), 179–197.

    Article  MATH  Google Scholar 

  15. ´E. Kisdi, Evolutionary branching under asymmetric competition. J. Theor. Biol. 197 (1999), 149–162.

    Google Scholar 

  16. U. Dieckmann and R. Law, Relaxation projections and the method of moments. In The Geometry of Ecological Interactions: Symplifying Spatial Complexity, 412–455, Cambridge University Press, UK, 2000.

    Google Scholar 

  17. J.A. Roughgarden, Theory of Population Genetics and Evolutionary Ecology: an Introduction. Macmillan, New York, 1979.

    Google Scholar 

  18. L. Desvillettes, P.E. Jabin, S. Mischler, and G. Raoul, On selection dynamics for continuous structured populations. Commun. Math. Sci. 6 (2008), 729–747.

    MATH  MathSciNet  Google Scholar 

  19. M.I. Freidlin and A.D. Wentzel, Random Perturbations of Dynamical Systems. Springer-Verlag, Germany, 1984.

    Google Scholar 

  20. U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34 (1996), 579–612.

    Article  MATH  MathSciNet  Google Scholar 

  21. M.L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems. Dynam. Stability Systems 8 (1993), 189–217.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Méléard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Méléard, S. (2011). Random Modeling of Adaptive Dynamics and Evolutionary Branching. In: Chalub, F., Rodrigues, J. (eds) The Mathematics of Darwin’s Legacy. Mathematics and Biosciences in Interaction. Springer, Basel. https://doi.org/10.1007/978-3-0348-0122-5_10

Download citation

Publish with us

Policies and ethics