Skip to main content

The role of the nonlinear Schrödinger equation in nonlinear optics

  • Chapter
  • First Online:

Part of the book series: Oberwolfach Seminars ((OWS,volume 42))

Abstract

We explain the role of the Nonlinear Schrödinger (NLS) equation as an amplitude equation in nonlinear optics. The NLS equation is a universal amplitude equation which can be derived via multiple scaling analysis in order to describe slow modulations in time and space of the envelope of a spatially and temporarily oscillating wave packet. It turned out to be a very successful model in nonlinear optics. Here we explain its justification by approximation theorems and its role as amplitude equation in some problems of nonlinear optics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G. P. Agrawal. Nonlinear fiber optics. Academic Press, 3rd edition, 2001.

    Google Scholar 

  2. H.-W. Alt. Linear functional analysis. An application oriented introduction.(Lineare Funktionalanalysis. Eine anwendungsorientierte Einf¨uhrung.) 5threvised ed. Berlin: Springer, 2006.

    Google Scholar 

  3. M. J. Ablowitz and H. Segur. Solitons and the inverse scattering transform,volume 4 of SIAM Studies in Applied Mathematics. Society for Industrial andApplied Mathematics (SIAM), Philadelphia, Pa., 1981.

    Google Scholar 

  4. A. Babin and A. Figotin. Linear superposition in nonlinear wave dynamics.Rev. Math. Phys., 18(9):971–1053, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain. Global solutions of nonlinear Schr¨odinger equations, volume 46of American Mathematical Society Colloquium Publications. AmericanMathematicalSociety, Providence, RI, 1999.

    Google Scholar 

  6. K. Busch, G. Schneider, L. Tkeshelashvili, and H. Uecker. Justification of thenonlinear Schr¨odinger equation in spatially periodic media. Z. Angew. Math.Phys., 57(6):905–939, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Chirilus-Bruckner. Nonlinear Interaction of Pulses. PhD thesis, TU Karlsruhe,2009.

    Google Scholar 

  8. M. Chirilus-Bruckner, C. Chong, G. Schneider, and H. Uecker. Separationof internal and interaction dynamics for NLS-described wave packets withdifferent carrier waves. J. Math. Anal. Appl., 347(1):304–314, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Chirilus-Bruckner, G. Schneider, and H. Uecker. On the interaction ofNLS-described modulating pulses with different carrier waves. Math. MethodsAppl. Sci., 30(15):1965–1978, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. G. Drazin and R. S. Johnson. Solitons: an introduction. Cambridge Textsin Applied Mathematics. Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  11. W.-P. D¨ull and G. Schneider. Justification of the nonlinear Schr¨odinger equationfor a resonant Boussinesq model. Indiana Univ. Math. J., 55(6):1813–1834, 2006.

    Google Scholar 

  12. J. D. Gibbon. Why the NLS equation is simultaneously a success, a mediocrityand a failure in the theory of nonlinear waves. In Soliton theory: a survey ofresults, Nonlinear Sci. Theory Appl., pages 133–151. Manchester Univ. Press,Manchester, 1990.

    Google Scholar 

  13. T. Gallay and G. Schneider. KP description of unidirectional long waves. Themodel case. Proc. Roy. Soc. Edinburgh Sect. A, 131(4):885–898, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hisakado. Breather trapping mechanism in piecewise homogeneous dna.Physics Letters A, 227:87–93, 1997.

    Google Scholar 

  15. L. A. Kalyakin. Asymptotic decay of a one-dimensional wave packet in a nonlineardispersive medium. Mat. Sb. (N.S.), 132(174)(4):470–495, 592, 1987.

    Google Scholar 

  16. L. A. Kalyakin. Long-wave asymptotics. Integrable equations as the asymptoticlimit of nonlinear systems. Uspekhi Mat. Nauk, 44(1(265)):5–34, 247,1989.

    Google Scholar 

  17. P. Kirrmann, G. Schneider, and A. Mielke. The validity of modulation equationsfor extended systems with cubic nonlinearities. Proc. Roy. Soc. EdinburghSect. A, 122(1-2):85–91, 1992.

    MathSciNet  MATH  Google Scholar 

  18. V. Lescarret, C. Blank, M. Chirilus-Bruckner, C. Chong, and G. Schneider.Standing generalized modulating pulse solutions for a nonlinear wave equationin periodic media. Nonlinearity, 22:1869–1898, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Leblond. Direct derivation of a macroscopic NLS equation from the quantumtheory. J. Phys. A: Math. Gen., 34:3109–3123, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Pazy. Semigroups of linear operators and applications to partial differentialequations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, NewYork, 1983.

    Google Scholar 

  21. R. D. Pierce and C. E. Wayne. On the validity of mean-field amplitude equationsfor counterpropagating wavetrains. Nonlinearity, 8(5):769–779, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Schneider. Validity and limitation of the Newell–Whitehead equation.Math. Nachr., 176:249–263, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Schneider. Justification of mean-field coupled modulation equations. Proc.Roy. Soc. Edinburgh Sect. A, 127(3):639–650, 1997.

    MathSciNet  MATH  Google Scholar 

  24. G. Schneider. Approximation of the Korteweg–de Vries equation by the nonlinearSchr¨odinger equation. J. Differential Equations, 147(2):333–354, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Schneider. Justification of modulation equations for hyperbolic systemsvia normal forms. NoDEA Nonlinear Differential Equations Appl., 5(1):69–82, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Schneider. Justification and failure of the nonlinear Schr¨odinger equationin case of non-trivial quadratic resonances. J. Differential Equations,216(2):354–386, 2005.

    Google Scholar 

  27. C. Sulem and P.-L. Sulem. The nonlinear Schr¨odinger equation, volume 139of Applied Mathematical Sciences. Springer-Verlag, New York, 1999. Selffocusingand wave collapse.

    Google Scholar 

  28. W. A. Strauss. Nonlinear wave equations, volume 73 of CBMS RegionalConference Series in Mathematics. Published for the Conference Board ofthe Mathematical Sciences, Washington, DC, 1989.

    Google Scholar 

  29. G. Schneider and H. Uecker. Existence and stability of modulating pulsesolutions in Maxwell’s equations describing nonlinear optics. Z. Angew. Math.Phys., 54(4):677–712, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Schneider, H. Uecker, and M. Wand. Interaction of modulated pulses innonlinear oscillator chains. Journal of Difference Equations and Applications,2009. accepted.

    Google Scholar 

  31. G. Schneider and C. E. Wayne. The long-wave limit for the water waveproblem. I. The case of zero surface tension. Comm. Pure Appl. Math.,53(12):1475–1535, 2000.

    Google Scholar 

  32. G. Schneider and C. Eugene Wayne. The rigorous approximation of longwavelengthcapillary-gravity waves. Arch. Ration. Mech. Anal., 162(3):247–285, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional ConferenceSeries in Mathematics. Published for the Conference Board of theMathematical Sciences, Washington, DC, 2006. Local and global analysis.

    Google Scholar 

  34. V. E. Zakharov. Stability of periodic waves of finite amplitude on the surfaceof a deep fluid. Sov. Phys. J. Appl. Mech. Tech. Phys,, 4:190–194, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Dörfler .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Dörfler, W., Lechleiter, A., Plum, M., Schneider, G., Wieners, C. (2011). The role of the nonlinear Schrödinger equation in nonlinear optics. In: Photonic Crystals: Mathematical Analysis and Numerical Approximation. Oberwolfach Seminars, vol 42. Springer, Basel. https://doi.org/10.1007/978-3-0348-0113-3_5

Download citation

Publish with us

Policies and ethics