Skip to main content

A Review of Recent Results on Approximation of Solutions of Stochastic Differential Equations

  • Conference paper
  • First Online:
Stochastic Analysis with Financial Applications

Part of the book series: Progress in Probability ((PRPR,volume 65))

Abstract

In this article, we give a brief review of some recent results concerning the study of the Euler-Maruyama scheme and its high-order extensions. These numerical schemes are used to approximate solutions of stochastic differential equations, which enables to approximate various important quantities including solutions of partial differential equations. Some have been implemented in Premia [56]. In this article we mainly consider results about weak approximation, the most important for financial applications.

Mathematics Subject Classification (2000). 60H35, 65C05,65C30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonsi, A. On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11(4):355–384, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bally, V. and Talay, D. The law of the Euler scheme for stochastic differential equations (II): convergence rate of the density. Monte Carlo Methods and Applications, 2:93–128, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bally, V. and Talay, D. The law of the Euler scheme for stochastic differential equations (I): convergence rate of the distribution function. Probability Theory and Related Fields, 104:43–60, 1995.

    Article  MathSciNet  Google Scholar 

  4. Beskos, A. and Roberts G.O. Exact Simulation of Diffusions, Ann. Appl. Probab., 15(4):2422–2444, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beskos, A., Papaspiliopoulos, O. and Roberts G.O. Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6):1077–1098, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  6. Billingsley, P. Convergence of Probability Measures. John Wiley and Sons, 1968. [7] Brigo, D. and Alfonsi, A. Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model. Finance Stoch. 9(1):29–42, 2005.

    Google Scholar 

  7. Buckwar, E. and Shardlow, T. Weak approximation of stochastic differential delay equations. IMA J. Numerical Analysis, 25:57–86, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cambanis, S. and Hu, Y. Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Stochastics Rep. 59(3–4):211–240, 1996.

    MathSciNet  MATH  Google Scholar 

  9. Clement, E., Kohatsu-Higa, A. and Lamberton, D. A duality approach for the weak approximation of stochastic differential equations. Ann. Appl. Probab. 16(3):1124–1154, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cruzeiro, A.B., Malliavin, P. and Thalmaier, A.: Geometrization of Monte Carlo numerical analysis of an elliptic operator: strong approximation. C. R. Math. Acad. Sci. Paris 338(6):481–486, 2004.

    MathSciNet  MATH  Google Scholar 

  11. Deelstra, G. and Delbaen, F. Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stochastic Models Data Anal. 14(1):77–84, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  12. Diop, A. Sur la discrétisation et le comportement `a petit bruit d’EDS unidimensionnelles dont les coefficients sont `a dérivées singuli`eres. Th`ese Université de Nice Sophia-Antipolis, 2003.

    Google Scholar 

  13. Detemple, J., Garcia, R., M. Rindisbacher. Asymptotic properties of Monte Carlo estimators of diffusion processes, Journal of Econometrics: 134(1):349–367, 2005.

    Google Scholar 

  14. Detemple, J., Garcia, R., and M. Rindisbacher, “Representation Formulas for Malliavin Derivatives of Diffusion Processes”, Finance and Stochastics, 9(3):349–367, 2005.

    Google Scholar 

  15. Detemple, J., Garcia, R., and M. Rindisbacher, “Asymptotic Properties of Monte Carlo Estimators of Derivatives”, Management Science, 51:1657–1675, 2005.

    Google Scholar 

  16. Fujiwara, T. Sixth order method of Kusuoka approximation. Preprint, 2006.

    Google Scholar 

  17. Gobet, E. LAMN property for elliptic diffusion: a Malliavin Calculus approach. Bernoulli 7:899–912, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gobet E. LAN property for ergodic diffusions with discrete observations. Ann. Inst. H. Poincaré Probab. Statist. 38:711–737, 2002.

    Google Scholar 

  19. Gobet E. and Munos, R. Sensitivity analysis using Itˆo-Malliavin calculus and martingales. Application to stochastic optimal control. SIAM Journal on Control and Optimization, 43(5):1676–1713, 2005.

    MathSciNet  MATH  Google Scholar 

  20. Gobet, E., Pages, G., Pham, H. and Printemps, J. Discretization and simulation of the Zakai equation. SIAM J. Numer. Anal. 44(6):2505–2538, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gobet E. and Labart C. Error expansion for the discretization of Backward Stochastic Differential Equations. Stochastic Process. Appl. 117(7):803–829, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  22. Grigoriu M. and Samorodnitsky G. Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Lévy processes. Stochastic Proc. Appl. 105:69–97, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  23. Guyon, J. Euler scheme and tempered distributions. Stochastic Process. Appl. 116(6)877–904, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hobson, D.G. and Rogers L.C.G. Complete models with stochastic volatility. Math. Finance 8(1):27–48, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hofmann, N., Müller-Gronbach, T. and Ritter, K. Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comp. 69(231):1017–1034, 2000.

    Google Scholar 

  26. Ikeda, N. and Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Amsterdam Oxford New York: North-Holland/Kodansha 1989.

    MATH  Google Scholar 

  27. Jacod, J., Kurtz, T., Méléard, S. and Protter, P. The approximate Euler method for Lévy driven stochastic differential equations. Ann. Inst. H. Poincaré, Probab. Statist. 41(3):523–558, 2005.

    Google Scholar 

  28. Jacod, J. and Protter, P. Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26(1):267–307, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jourdain, B. and Sbai, M. Exact retrospective Monte Carlo computation of arithmetic average Asian options. Monte Carlo Methods Appl. 13(2):135–171, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kebaier, A. Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing. Ann. Appl. Probab. 15(4):2681–2705, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kloeden, P.E. and Platen, E. Numerical Solution of Stochastic Differential Equations. Springer Berlin Heidelberg New York, 1992.

    Google Scholar 

  32. Kohatsu-Higa, A. and Pettersson, R. On the simulation of some functionals of diffusion processes. Proceedings of the “Fourth Workshop on Stochastic Numerics”. Research Institute for the Mathematical Sciences, Kyoto 2000.

    Google Scholar 

  33. Kohatsu-Higa, A. and Yamazato, M. On moments and tail behaviors of storage processes. Journal of Applied Probability, 20:1069–1086, 2003.

    Article  MathSciNet  Google Scholar 

  34. Kurtz, T. and Protter, P. Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case. Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), Lecture Notes in Math. 1627:197–285, Springer, Berlin, 1996.

    Google Scholar 

  35. Kurtz, T. and Protter, P. Weak convergence of stochastic integrals and differential equations. Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), Lecture Notes in Math. 1627:1–41, Springer, Berlin, 1996.

    Google Scholar 

  36. Kurtz, T. and Protter, P. Characterizing the weak convergence of stochastic integrals. Stochastic analysis (Durham, 1990), London Math. Soc. Lecture Note Ser. 167:255–259, Cambridge Univ. Press, Cambridge, 1991.

    Google Scholar 

  37. Kurtz, T. and Protter, P.Wong-Zakai corrections, random evolutions, and simulation schemes for SDEs. Stochastic analysis, 331–346, Academic Press, Boston, MA, 1991.

    Google Scholar 

  38. Kurtz, T. and Protter, P. Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19(3): 1035–1070, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  39. Kusuoka, S. Approximation of expectation of diffusion process and mathematical finance. Taniguchi Conference on Mathematics Nara ’98, Adv. Stud. Pure Math. 31:147–165, Math. Soc. Japan, Tokyo, 2001.

    Google Scholar 

  40. Kusuoka, S.: Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus. Adv. Math. Econ., 6:69–83, Springer, Tokyo, 2004.

    Google Scholar 

  41. Lyons, T. and Victoir, N.: Cubature on Wiener space. Stochastic analysis with applications to mathematical finance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460:169–198, 2004.

    MathSciNet  MATH  Google Scholar 

  42. Milshtein, G.N.: A method of second order accuracy integration of stochastic differential equations. Theory Probab. Appl. 23:396–401, 1978.

    Article  MathSciNet  Google Scholar 

  43. Menozzi, S. Discrétisations associées `a un processus dans un domaine et schémas numériques probabilistes pour les EDP paraboliques quasilinéaires. Th`ese Université Pierre et Marie Curie – Paris VI, 2004.

    Google Scholar 

  44. Mikulevicius, R. and Platen, E. Time discrete Taylor approximations for Itˆo processes with jump component. Math. Nachr. 138(9):93–104, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  45. Müller-Gronbach, T. Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14(4):1605–1642, 2004.

    Google Scholar 

  46. Ninomiya, S. A new simulation scheme of diffusion processes: application of the Kusuoka approximation to finance problems. Math. Comput. Simulation 62:479–486, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  47. Ninomiya, S. A partial sampling method applied to the Kusuoka approximation. Monte Carlo Methods Appl. 9(1):27–38, 2003.

    MathSciNet  MATH  Google Scholar 

  48. Ninomiya, M. and Ninomiya, S.: A new higher-order weak approximation scheme for stochastic differential equations and the Runge-Kutta method. Finance and Stochastics 13:415–443, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  49. Ninomiya, S. and Victoir, N. Weak approximation of stochastic differential equations and application to derivative pricing. Applied Mathematical Finance, 15(2):107–121, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  50. Nualart, D. The Malliavin Calculus and Related Topics. Springer Berlin Heidelberg New York, 1995.

    Google Scholar 

  51. Nualart, D. Analysis on Wiener space and anticipating stochastic calculus. Lecture Notes in Math., 1690:123–227, 1998.

    Article  MathSciNet  Google Scholar 

  52. Pag`es, G. Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and complexity. Monte Carlo Methods Appl. 13(1):37–70, 2007.

    Google Scholar 

  53. Pettersson, R. Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Proc. Appl. 59:295–308, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  54. Platen, E. An approximation method for a class of Itˆo processes with jump component. Litovsk. Mat. Sb. 22(2):124–136, 1982.

    MathSciNet  MATH  Google Scholar 

  55. PREMIA: An Option Pricer, Mathfi Project (INRIA, CERMICS, UMLV). http://www-rocq.inria.fr/mathfi/Premia/

    Google Scholar 

  56. Protter, P.E. Stochastic integration and differential equations. Applications of Mathematics (New York) 21. Stochastic Modelling and Applied Probability. Springer-Verlag, 2004.

    Google Scholar 

  57. S_lomiński, L. On approximation of solutions of multidimensional SDEs with reflecting boundary condition. Stochastic Proc. Appl. 50:197–219, 1994.

    Google Scholar 

  58. S_lomiński, L. Euler approximation of solutions of SDEs with reflecting boundary. Stochastic Proc. Appl. 94:317–337, 2001.

    Google Scholar 

  59. Talay, D. and Tubaro, L. Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8(4):483–509, 1990.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Jourdain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Jourdain, B., Kohatsu-Higa, A. (2011). A Review of Recent Results on Approximation of Solutions of Stochastic Differential Equations. In: Kohatsu-Higa, A., Privault, N., Sheu, SJ. (eds) Stochastic Analysis with Financial Applications. Progress in Probability, vol 65. Springer, Basel. https://doi.org/10.1007/978-3-0348-0097-6_9

Download citation

Publish with us

Policies and ethics