Skip to main content

Stability of a Nonlinear Equation Related to a Spatially-inhomogeneous Branching Process

  • Conference paper
  • First Online:
Stochastic Analysis with Financial Applications

Part of the book series: Progress in Probability ((PRPR,volume 65))

Abstract

Consider the nonlinear equation

$$\frac{\partial}{\partial t}u(x,t)=\Delta_\alpha u (x, t) + a(x) \sum\limits_{k=2}^{\infty} pk^{{u^k}} (x, t)+(p0 + p1 u(x, t))\phi(x), x\in \mathbb{R}^d,$$

where α ∈ (0, 2], u (x, 0) is nonnegative, {pk, k = 0, 1,...} is a probability distribution on ℤ+, and a and φ are positive functions satisfying certain growth conditions. We prove existence of non-trivial positive global solutions when p0, p1 and u(x, 0) are small.

Mathematics Subject Classification (2000).

Primary: 35K58, 35B44. Secondary:35B09, 35B51.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bogdan, T. Byczkowski, Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20 (2000), no. 2, 293–335.

    MathSciNet  MATH  Google Scholar 

  2. Chakraborty, S. and López-Mimbela, J.A. Nonexplossion of a class of semilinear equations via branching particle representations. Adv. Appl. Prob. 40 (2008), 250–272.

    Google Scholar 

  3. Erickson, K.B. Rate of expansion of an inhomogeneous branching process of Brownian particles. Z. Wahrsch. verw. Gebiete, 66 (1984), 129–140.

    Article  MathSciNet  MATH  Google Scholar 

  4. Folland, G.B. Introduction to partial differential equations 2nd Edition. Princeton University Press. Princeton, New Jersey 1995.

    Google Scholar 

  5. Lalley, S. and Sellke, T. Limit theorems for the frontier of a one-dimensional branching diffusion. Ann. Probab. 20 (1992), 1310–1340.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lalley, S. and Sellke, T. Traveling waves in inhomogeneous branching Brownian motions. I and II. Ann. Probab. 16 (1988), 1051–1062, and 17 (1989), 116–127.

    Google Scholar 

  7. Lee T.Y., Some limit theorems for super-Brownian motion and semilinear differential equations, Annals of Probab. 21 (1993), 979–995.

    Article  MATH  Google Scholar 

  8. López-Mimbela, J.A. (1996). A probabilistic approach to existence of global solutions of a system of nonlinear differential equations, Aportaciones Matemáticas Serie Notas de Investigación 12, 147–155.

    Google Scholar 

  9. López-Mimbela, J.A. and Wakolbinger, A. (1998). Length of Galton-Watson trees and blow up of semilinear systems. Journal of Applied Probability 35, 802–811.

    Google Scholar 

  10. Pinsky, Ross G. Finite time blow-up for the inhomogeneous equation ut = Δu + a(x)up + λφ in Rd. Proc. Amer. Math. Soc. 127 (1999), no. 11, 3319–3327.

    Google Scholar 

  11. Nagasawa, M. and Sirao, T. (1969). Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation. Trans. Amer. Math. Soc., 139, 301–310.

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, X. On the cauchy problem for reaction-difusion equations. Trans. Amer. Math. Soc., 337 (1993), 549–590.

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Qi S. A new critical phenomenon for semilinear parabolic problems. J. Math. Anal. Appl. 219 (1998), no. 1, 125–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Chakraborty, S., Kolkovska, E.T., López-Mimbela, J.A. (2011). Stability of a Nonlinear Equation Related to a Spatially-inhomogeneous Branching Process. In: Kohatsu-Higa, A., Privault, N., Sheu, SJ. (eds) Stochastic Analysis with Financial Applications. Progress in Probability, vol 65. Springer, Basel. https://doi.org/10.1007/978-3-0348-0097-6_2

Download citation

Publish with us

Policies and ethics