Skip to main content

Sensitivity Analysis for Jump Processes

  • Conference paper
  • First Online:
Stochastic Analysis with Financial Applications

Part of the book series: Progress in Probability ((PRPR,volume 65))

  • 1730 Accesses

Abstract

Consider stochastic differential equations with jumps. The goal in this paper is to study the sensitivity of the solution with respect to the initial point, under the conditions on the Lévy measure and the uniformly elliptic condition on the coefficients. The key tool is the martingale property based upon the Kolmogorov backward equation for the infinitesimal generator associated with the equation.

Mathematics Subject Classification (2000). 60H30, 60J75, 60H07.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Applebaum: Lévy processes and stochastic calculus, 2nd ed. Cambridge Univ. Press (2009).

    Google Scholar 

  2. D. Applebaum: Lévy processes and stochastic calculus, 2nd ed. Cambridge Univ. Press (2009).

    Google Scholar 

  3. V. Bally, M.-P. Bavouzet, M. Messaoud: Integration by parts formula for locally smooth laws and applications to sensitivity computations, Ann. Appl. Probab. 17, 33–66 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  4. J.M. Bismut: Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions, Z. Wahrsch. Verw. Gebiete 56, 469–505 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  5. J.M. Bismut: Calcul des variations stochastique et processus de sauts, Z. Wahrsch. Verw. Gebiete 63, 147–235 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. J.M. Bismut: Large deviations and the Malliavin calculus, Birkh¨auser (1984). [6] P. Carr, H. Geman, D.B. Madan, M. Yor: The fine structure of asset returns: an empirical investigation, Journal of Business 75, 305–332 (2002).

    Google Scholar 

  7. T.R. Cass, P.K. Friz: The Bismut-Elworthy-Li formula for jump-diffusions and applications to Monte Carlo methods in finance, available at arXiv:math/0604311v3 (2007).

    Google Scholar 

  8. M.H. A. Davis, M.P. Johansson: Malliavin Monte Carlo Greeks for jump diffusions, Stoch. Processes Appl. 116, 101–129 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. El-Khatib, N. Privault: Computations of Greeks in a market with jumps via the Malliavin calculus, Finance Stoch. 8, 161–179 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Elliott, A.H. Tsoi: Integration by parts for Poisson processes, J. Multivariate Anal. 44, 179–190 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  11. K.D. Elworthy, X.M. Li: Formulae for the derivatives of heat semigroups, J. Funct. Anal. 125, 252–286 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Fournié, J.M. Lasry, J. Lebuchoux, P.L. Lions, N. Touzi: Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch. 3, 391–412 (1999).

    Google Scholar 

  13. T. Fujiwara, H. Kunita: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group, J. Math. Kyoto Univ. 25, 71–106 (1985).

    MathSciNet  MATH  Google Scholar 

  14. I.I. Gihman, A.V. Skorokhod: Stochastic differential equations, Springer-Verlag (1972).

    Google Scholar 

  15. R. Kawai, A. Takeuchi: Greeks formulae for an asset price model with gamma processes, to appear in Math. Finance (2011).

    Google Scholar 

  16. T. Komatsu, A. Takeuchi: Generalized Hörmander theorem for non-local operators, In Recent Developments in Stochastic Analysis and Related Topics; S. Albeverio et al. Eds.; World Scientific, Singapore (2004), 234–245.

    Google Scholar 

  17. D. Nualart: The Malliavin calculus and related topics, 2nd edition, Springer-Verlag (2006).

    Google Scholar 

  18. A. Takeuchi: The Malliavin calculus for SDE with jumps and the partially hypoelliptic problem, Osaka J. Math. 39, 523–559 (2002).

    MathSciNet  MATH  Google Scholar 

  19. A. Takeuchi: The Bismut-Elworthy-Li type formulae for stochastic differential equations with jumps, J. Theoret. Probab. 23, 576–604 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Takeuchi, A. (2011). Sensitivity Analysis for Jump Processes. In: Kohatsu-Higa, A., Privault, N., Sheu, SJ. (eds) Stochastic Analysis with Financial Applications. Progress in Probability, vol 65. Springer, Basel. https://doi.org/10.1007/978-3-0348-0097-6_14

Download citation

Publish with us

Policies and ethics