Skip to main content

Exponentially Stable Stationary Solutions for Delay Stochastic Evolution Equations

  • Conference paper
  • First Online:

Part of the book series: Progress in Probability ((PRPR,volume 65))

Abstract

We establish some sufficient conditions ensuring existence, uniqueness and exponential stability of non-trivial stationary mild solutions for a class of delay stochastic partial differential equations. Some known results are generalized and improved.

Mathematics Subject Classification (2000). 60H15; 34K21; 34K50.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yuri Bakhtin and Jonathan C. Mattingly, Stationary solutions of stochastic differential equation with memory and stochastic partial differential equations, Commun. Contemp. Math., 7(2005), 553–582.

    Google Scholar 

  2. Yuri Bakhtin and Jonathan C. Mattingly, Stationary solutions of stochastic differential equation with memory and stochastic partial differential equations, Commun. Contemp. Math., 7(2005), 553–582.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hakima Bessaih, Stationary solutions for the 2D stochastic dissipative Euler equation, Seminar on Stochastic Analysis, Random Fields and Applications V, 23–36, Progr. Probab., 59, Birkh¨auser, Basel, 2008.

    Google Scholar 

  4. Dirk Blömker and Martin Hairer, Stationary solutions for a model of amorphous thin-film growth, Stochastic Anal. Appl., 22(2004), 903–922.

    Google Scholar 

  5. Tomás Caraballo, Asymptotic exponential stability of stochastic partial differential equations with delay, Stochastics Stochastics Rep., 33(1990), 27–47.

    Google Scholar 

  6. Tomás Caraballo, M.J. Garrido-Atienza and José Real, Existence and uniqueness of solutions for delay stochastic evolution equations, Stochastic Anal. Appl., 20(2002), 1225–1256.

    Google Scholar 

  7. Tomás Caraballo, M.J. Garrido-Atienza and Björn Schmalfus, Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18(2007), 271–293.

    Google Scholar 

  8. Tomás Caraballo, M.J. Garrido-Atienza and Björn Schmalfus, Asymptotic behaviour of non-trivial stationary solutions of stochastic functional evolution equations, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 6(2004), 39–42.

    Google Scholar 

  9. Tomás Caraballo, Peter E. Kloeden and Björn Schmalfus, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50(2004),183–207.

    Google Scholar 

  10. Tomás Caraballo, Peter E. Kloeden and Björn Schmalfus, Stabilization of stationary solutions of evolution equations by noise, Discrete Contin. Dyn. Syst. Ser. B, 6(2006), no. 6, 1199–1212

    Google Scholar 

  11. T. Caraballo and Kai Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays, Stochastic Anal. Appl., 17(1999), 743–763.

    Article  MathSciNet  MATH  Google Scholar 

  12. Tomás Caraballo, Kai Liu and A. Truman, Stochastic functional partial differential equations: existence, uniqueness and asymptotic decay property, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456(2000), 1775–1802.

    Google Scholar 

  13. Tomás Caraballo, José Real and Takeshi Taniguchi, The exponential stability of neutral stochastic delay partial partial differential equations, Discrete Contin. Dyn. Syst., 18 (2007), 295–313.

    Google Scholar 

  14. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.

    Google Scholar 

  15. Jack Hale, Theory of Functional Differential Equations, Springer-Verlag, 1992.

    Google Scholar 

  16. R.Z. Haś minski˘1, Stochastic Stability of Differential Equations, Sijthoff & Nordhoff, Alphen aan den Rijn, The Netherlands; Rockville, Maryland, USA, 1980.

    Google Scholar 

  17. U.G. Haussmann, Asymptotic stability of the linear Itˆo equation in infinite dimensions, J. Math. Anal. Appl., 65(1978), 219–235.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Ichikawa, Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl., 90(1982), 12–44.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kai Liu, Lyapunov functionals and asymptotic stability of stochastic delay evolution equations, Stochastics Stochastics Rep., 63 (1998), 1–26.

    MathSciNet  MATH  Google Scholar 

  20. Kai Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Monographs and Surveys in Pure and Applied Mathematics; 135, Chapman & Hall/CRC, 2006.

    Google Scholar 

  21. Kai Liu, Stationary solutions of retarded Ornstein-Uhlenbeck processes in Hilbert spaces, Statist. Probab. Lett., 78(2008), 1775–1783.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kai Liu, A criterion for stationary solutions of retarded linear equations with additive noise, preprint, 2008.

    Google Scholar 

  23. Kai Liu, Retarded stationary Ornstein-Uhlenbeck processes driven by Lévy noise and operator self-decomposability, Potential Anal., 33(2010), 291–312.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kai Liu and Xuerong Mao, Exponential stability of nonlinear stochastic evolution equations, Stochastic Process. Appl., 78(1998), 173–193.

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiaowan Luo and Guolie Lan, Stochastically bounded solutions and stationary solutions of stochastic differential equations in Hilbert spaces, Statistics and Probability Letters, 79(2009), 2260–2265.

    Article  MathSciNet  MATH  Google Scholar 

  26. Xuerong Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.

    Google Scholar 

  27. S-.E-.A. Mohammed, Stochastic Functional Differential Equations, Pitman, Boston, 1984.

    Google Scholar 

  28. T. Taniguchi, Kai Liu and A. Truman, Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181(2002), 72–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaowan Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Luo, J. (2011). Exponentially Stable Stationary Solutions for Delay Stochastic Evolution Equations. In: Kohatsu-Higa, A., Privault, N., Sheu, SJ. (eds) Stochastic Analysis with Financial Applications. Progress in Probability, vol 65. Springer, Basel. https://doi.org/10.1007/978-3-0348-0097-6_11

Download citation

Publish with us

Policies and ethics