Skip to main content

On the Motion of Several Rigid Bodies in an Incompressible Viscous Fluid under the Influence of Selfgravitating Forces

  • Chapter
  • First Online:
  • 2072 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 80))

Abstract

The global existence of weak solutions is proved for the problem of the motion of several rigid bodies in non-newtonian fluid of power-law with selfgraviting forces.

Mathematics Subject Classification (2000). 35Q35.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Borchers. Zur Stabilität und Faktorisierungsmethode für die Navier-Stokes-Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitation Thesis, Univ. of Paderborn, 1992.

    Google Scholar 

  2. C. Bost, G.H. Cottet and E. Maitre. Numerical analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid. Preprint, 2009.

    Google Scholar 

  3. H. Brenner. The Stokes resistance of an arbitrary particle II. Chem. Engng. Sci. 19, 599–624, 1959.

    Article  Google Scholar 

  4. M. Bulïček, E. Feireisl and J. Mälek. Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Analysis: Real World Applications, 10, 2, 992–1015, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Conca, J. San Martin and M. Tucsnak. Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differential Equation, 25, 1019–1042, 2000.

    MATH  MathSciNet  Google Scholar 

  6. B. Desjardins and M.J. Esteban. Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Rational Mech. Anal., 146, 59–71, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Desjardins and M.J. Esteban. On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models. Commun. Partial Differential Equations, 25, 1399–1413, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskraba. Global in time weak solutions for compressible barotropic self-graviting fluids, DCDS, A, 11, 1, 113–130.

    Google Scholar 

  9. B. Ducomet, E. Feireisl, H. Petzeltova, I. Straskraba: Existence global pour un fluide barotropique autogravitant, C. R. Acad. Paris, 332, 627–632, 2001.

    MATH  MathSciNet  Google Scholar 

  10. R.J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98, 511–547, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Farwig. An Lq-analysis of viscous fluid flow past a rotating obstacle. Tˆohoku Math. J., 58, 129–147, 2005

    Article  MathSciNet  Google Scholar 

  12. R. Farwig. Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle. Banach Center Publications Warsaw, 70, 73–82, 2005.

    Article  MathSciNet  Google Scholar 

  13. R. Farwig and T. Hishida. Stationary Navier-Stokes flow around a rotating obstacle. Funkcialaj Ekvacioj, 3, 371–403, 2007.

    Article  MathSciNet  Google Scholar 

  14. R. Farwig, T. Hishida, and D. Müller. L q-theory of a singular “winding” integral operator arising from fluid dynamics. Pacific J. Math., 215, 297–312, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Feireisl and J. Málek. On the Navier- Stokes equations with temperature dependent transport coefficients. Differ. Equ. Nonl. Mech., Art. Id 90616, 2006.

    Google Scholar 

  16. E. Feireisl. On the motion of rigid bodies in a viscous compressible fluid. Arch. Rational Mech. Anal., 167, 281–308, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Feireisl, M. Hillairet and Š. Nečasová. On the motion of several rigid bodies in an incompressible non-Newtonian fluid. Nonlinearity, 21, 1349–1366, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Feireisl and A. Novotný. Singular limits in thermodynamics of viscous fluids. Birkhäuser, Basel, 2008.

    Google Scholar 

  19. E. Feireisl, J. Neustupa, J. Stebel. Convergence of a Brinkman-type penalization for compressible fluid flows. Preprint of the Necas Centrum, 2010.

    Google Scholar 

  20. J. Frehse, J. Málek and M. Růźička. Large data existence result for unsteady flows of inhomogeneous heat-conducting incompressible fluids. Preprint of the Necas Centrum, 2008.

    Google Scholar 

  21. J. Frehse and M. Růźička. Non-homogeneous generalized Newtonian fluids. Math. Z., 260, 35–375, 2008.

    Article  Google Scholar 

  22. G.P. Galdi. On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Rat. Mech. Anal., 148, 53–88, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. G.P. Galdi. On the motion of a rigid body in a viscous fluid: A mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I, Elsevier Sci., Amsterdam, 2002.

    Google Scholar 

  24. D. Gérard-Varet and M. Hillairet. Regularity issues in the problem of fluid structure interaction. Archive for Rational Mechanical Analysis. In press.

    Google Scholar 

  25. M.D. Gunzburger, H.C. Lee, and A. Seregin. Global existence of weak solutions for viscous incompressible flow around a moving rigid body in three dimensions. J. Math. Fluid Mech., 2, 219–266, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  26. T.I. Hesla. Collision of smooth bodies in a viscous fluid: A mathematical investigation. 2005. PhD Thesis – Minnesota.

    Google Scholar 

  27. M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm. Partial Differential Equations, 32, 7–9, 1345–1371, 2007. Preprint – ENS Lyon.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Hillairet and T. Takahashi. Collisions in three dimensional fluid structure interaction problems SIAM J. Math. Anal., 40, 6, 2451–2477, 2009

    Article  MATH  MathSciNet  Google Scholar 

  29. K.-H. Hoffmann and V.N. Starovoitov. On a motion of a solid body in a viscous fluid. Two dimensional case. Adv. Math. Sci. Appl., 9, 633–648, 1999.

    MATH  MathSciNet  Google Scholar 

  30. K.H. Hoffmann and V.N. Starovoitov. Zur Bewegung einer Kugel in einer zähen Flüssigkeit. (German) [On the motion of a sphere in a viscous fluid] Doc. Math., 5, 15–21, 2000.

    MATH  MathSciNet  Google Scholar 

  31. G. Kirchhoff. Über die Bewegung eines Rotationskörpers in einer Flüssigkeit. (German) [On the motion of a rotating body in a fluid] Crelle J. 71, 237–281, 1869.

    Google Scholar 

  32. H. Koch and V.A. Solonnikov. L P estimates for a solutions to the nonstationary Stokes equations. J. Math. Sci., 106, 3042–3072, 2001.

    Article  MathSciNet  Google Scholar 

  33. J. Máalek, J. Neˇcas, M. Rokyta, and M. Růźička. Weak and measure-valued solutions to evolutionary PDE's. Chapman and Hall, London, 1996.

    Google Scholar 

  34. J.A. San Martin, V. Starovoitov, and M. Tucsnak. Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal., 161, 93–112, 2002.

    Article  MathSciNet  Google Scholar 

  35. D. Serre. Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Jap. J. Appl. Math., 4, 99–110, 1987.

    Article  MATH  Google Scholar 

  36. H. Sohr. The Navier-Stokes equations: An elementary functional analytic approach. Birkhäuser Verlag, Basel, 2001.

    MATH  Google Scholar 

  37. V.N. Starovoitov. Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid. J. Math. Sci., 130, 4893–4898, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  38. V.N. Starovoitov. Behavior of a rigid body in an incompressible viscous fluid near boundary. In International Series of Numerical Mathematics, 147, 313–327, 2003.

    MathSciNet  Google Scholar 

  39. N.V. Judakov. The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. (Russian) Dinamika Splošn. Sredy Vyp., 18, 249–253, 1974.

    MathSciNet  Google Scholar 

  40. L. Tartar. Compensated compactness and applications to partial differential equations. Heriot-Watt Symposium, Vol. IV, Res. Notes in Math. 39, Pitman, Boston, Mass., 136–212, 1979.

    MathSciNet  Google Scholar 

  41. W. Thomson (Lord Kelvin). Mathematical and Physical Papers, Vol. 4. Cambridge University Press, 1982.

    Google Scholar 

  42. H.F. Weinberger. On the steady fall of a body in a Navier-Stokes fluid. Proc. Symp. Pure Mathematics 23, 421–440, 1973.

    Google Scholar 

  43. H.F. Weinberger. Variational properties of steady fall in Stokes flow. J. Fluid Mech. 52, 321–344, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  44. J. Wolf. Existence of weak solutions to the equations of non-stationary motion of non-newtonian fluids with shear rate dependent viscosity. J. Math. Fluid Dynamics, 8, 1–35, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ducomet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Ducomet, B., Nečasová, Š. (2011). On the Motion of Several Rigid Bodies in an Incompressible Viscous Fluid under the Influence of Selfgravitating Forces. In: Escher, J., et al. Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_9

Download citation

Publish with us

Policies and ethics