Skip to main content

Linearized Stability for Nonlinear Partial Differential Delay Equations

  • Chapter
  • First Online:
Parabolic Problems

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 80))

Abstract

The object of the paper are partial differential delay equations of the form \( \dot{u}(t)+Bu(t)\ni\,F(u_{t}),\,t \geq 0,\,u_{0} = \varphi \), with \( B\,\subset\,X\,\times\,X\,\omega \)-accretive in a Banach space X. We extend the principle of linearized stability around an equilibrium from the semilinear case, with B linear, to the fully nonlinear case, with B having a linear ‘resolvent-differential’ at the equilibrium.

Mathematics Subject Classification (2000). Primary 35R10, 47J35; Secondary 47H06, 47H20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Adimy and K. Ezzinbi, Local existence and linearized stability for partial functional-differential equations, Dynam. Systems Appl. 7 (1998), 389–403.

    MATH  MathSciNet  Google Scholar 

  2. W. Arendt, C.J.K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Math., vol. 96, Birkhäuser, Basel-Boston-Berlin 2001

    Google Scholar 

  3. P. Bénilan, M.G. Crandall, and A. Pazy, Evolution Equations Governed by Accretive Operators, Springer, in preparation.

    Google Scholar 

  4. D.W. Brewer, A nonlinear semigroup for a functional differential equation, Trans. Amer. Math. Soc. 236 (1978), 173–191.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Dyson and R. Villella-Bressan, Functional differential equations and non-linear evolution operators, Proc. Royal Soc. Edinburgh 75A (1975/76), 223–234.

    MathSciNet  Google Scholar 

  6. J. Dyson and R. Villella-Bressan, Semigroups of translation associated with functional and functional differential equations, Proc. Royal Soc. Edinburgh 82A (1979), 171–188.

    MathSciNet  Google Scholar 

  7. H. Flaschka and M.J. Leitman, On semigroups of nonlinear operators and the solution of the functional differential equation x˙(t) = F(xt), J. Math. Anal. Appl. 49 (1975), 649–658.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.A. Gourley and N.F. Britton, On a modified Volterra population equation with diffusion, Nonlinear Analysis TMA 21 (1993), 389–395.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.K. Hale, Functional differential equations with infinite delays, J. Math. Anal. Appl. 48 (1974), 276–283.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl. 118 (1986), 455–466.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11–41.

    MATH  MathSciNet  Google Scholar 

  12. F. Kappel and W. Schappacher, Some considerations to the fundamental theory of infinite delay equations, J. Diff. Eqns. 37 (1980), 141–183.

    Article  MATH  MathSciNet  Google Scholar 

  13. A.G. Kartsatos, A direct method for the existence of evolution operators associated with functional evolutions in general Banach spaces, Funkcial. Ekvac. 31 (1988), 89–102.

    MATH  MathSciNet  Google Scholar 

  14. A.G. Kartsatos and M.E. Parrott, The weak solution of a functional differential equation in a general Banach space, J. Diff. Eqns. 75 (1988), 290–302.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Kato, A principle of linearized stability for nonlinear evolution equations, Trans. Amer. Math. Soc. 347 (1995), 2851–2868

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Kunisch and W. Schappacher, Mild and strong solutions for partial differential equations with delay, Annali Mat. Pura Appl. Ser. 4 125 (1980), 193–219.

    Article  MATH  MathSciNet  Google Scholar 

  17. R.H. Martin and H.L. Smith, Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence, J. reine angew. Math. 413 (1991), 1–35.

    MATH  MathSciNet  Google Scholar 

  18. I. Miyadera, Nonlinear Semigroups, Transl. of Math. Monographs, no. 109, Amer. Math. Soc., Providence, RI, 1992.

    Google Scholar 

  19. M.E. Parrott, Positivity and a principle of linearized stability for delay-differential equations, Diff. Integral Eqns. 2 (1989), 170–182.

    MATH  MathSciNet  Google Scholar 

  20. M.E. Parrott, Linearized stability and irreducibility for a functional differential equation, SIAM J. Math. Anal. 23 (1992), 649–661.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.T. Plant, Nonlinear semigroups of translations in Banach space generated by functional differential equations, J. Math. Anal. Appl. 60 (1977), 67–74.

    Article  MATH  MathSciNet  Google Scholar 

  22. W.M. Ruess, Existence of solutions to partial functional differential equations with delay, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (A.G. Kartsatos, ed.), Lecture Notes Pure Appl.Math., no. 178, Marcel Dekker, 1996, pp. 259–288.

    Google Scholar 

  23. W.M. Ruess, Existence and stability of solutions to partial functional differential equations with delay, Adv. Diff. Eqns. 4 (1999), 843–876

    MATH  MathSciNet  Google Scholar 

  24. W.M. Ruess, Linearized stability for nonlinear evolution equations, J. Evol. Equ. 3 (2003), 361–373

    MATH  MathSciNet  Google Scholar 

  25. W.M. Ruess, Flow invariance for nonlinear partial differential delay equations, Trans. Amer. Math. Soc. 361 (2009), 4367–4403

    Article  MATH  MathSciNet  Google Scholar 

  26. W.M. Ruess and W.H. Summers, Operator semigroups for functional differential equations with delay, Trans. Amer. Math. Soc. 341 (1994), 695–719.

    Article  MATH  MathSciNet  Google Scholar 

  27. W.M. Ruess and W.H. Summers, Linearized stability for abstract differential equations with delay, J. Math. Anal. Appl. 198 (1996), 310–336.

    Article  MATH  MathSciNet  Google Scholar 

  28. C.C. Travis and G.F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395–418.

    Article  MATH  MathSciNet  Google Scholar 

  29. G.F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  30. G.F. Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225–230.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., no. 119, Springer, New York, 1996.

    Google Scholar 

  32. K. Yoshida, The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J. 12 (1982), 321–348.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang M. Ruess .

Editor information

Editors and Affiliations

Additional information

Dedicated to Herbert Amann on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Ruess, W.M. (2011). Linearized Stability for Nonlinear Partial Differential Delay Equations. In: Escher, J., et al. Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_29

Download citation

Publish with us

Policies and ethics