Advertisement

Function spaces on and of fractals

  • Hans TriebelEmail author
Chapter
Part of the Modern Birkhäuser Classics book series (MBC)

Abstract

It is the main aim of this Chapter to discuss the seminal interrelation between fractals and function spaces. This paves the way to a substantial spectral theory of fractal (pseudo)differential operators which will be developed in Chapter V. We begin in Section 17 with a rather final Fourier analytical characterization of the Hausdorff dimension of arbitrary Borel

Keywords

Quadratic Form Function Space Hausdorff Dimension Radon Measure Approximation Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Shi93]
    Shima, T., The eigenvalue problem for the Laplacian on the Sierpinski gasket. In: Asymptotic problems in probability theory: stochastic models and diffusions on fractals. Pitman Research Notes in Math. 283, London, Longman Sci. Techn., 1993, 279–288Google Scholar
  2. [Har95]
    Haroske, D., Approximation numbers in some weighted function spaces. J. Approx. Theory 83 (1995), 104–136zbMATHCrossRefMathSciNetGoogle Scholar
  3. [Mat95]
    Mattila, P., Geometry of sets and measures in euclidean spaces. Cambridge Univ. Press, 1995Google Scholar
  4. [Man77]
    Mandelbrot, B.B., Fractals: form, chance, and dimension. San Francisco, Freeman, 1977zbMATHGoogle Scholar
  5. [Rud91]
    Rudin, W., Functional analysis. Sec. ed., New York, McGraw-Hill, Inc., 1991zbMATHGoogle Scholar
  6. [AdH96]
    Adams, D.R. and Hedberg, L.I., Function spaces and potential theory. Berlin, Springer, 1996Google Scholar
  7. [TrW96a]
    Triebel, H. and Winkelvoss, H., Intrinsic atomic characterizations of function spaces on domains. Math. Z. 221 (1996), 647–673MathSciNetGoogle Scholar
  8. [Lap93]
    Lapidus, M.L., Vibrations of fractal drums. The Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture. In: Ordinary and partial differential equations, vol. IV. Pitman Research Notes in Math. 289, London, Longman Sci. Techn. 1993, 126–209Google Scholar
  9. [JoW95]
    Jonsson, A. and Wallin, H., The dual of Besov spaces on fractals. Studia Math. 112 (1995), 285–300zbMATHMathSciNetGoogle Scholar
  10. [Maz85]
    Maz’ja, V.G., Sobolev spaces. Berlin, Springer, 1985zbMATHGoogle Scholar
  11. [ET96]
    Edmunds, D.E. and Triebel, H., Function spaces, entropy numbers, differential operators. Cambridge Univ. Press 1996Google Scholar
  12. [HaT94a]
    Haroske, D. and Triebel, H., Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators I. Math. Nachr. 167 (1994), 131–156zbMATHCrossRefMathSciNetGoogle Scholar
  13. [LeV96]
    Levitin, M. and Vassiliev, D., Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals. Proc. London Math. Soc. 72 (1996), 188–214zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Net92b]
    Netrusov, Yu.V., Estimates of capacities associated with Besov spaces (Russian). Zap. Nauchn. Sem. St.-Peterburg, Otdel. Mat. Inst. Steklov (POMI) 201 (1992), 124–156Google Scholar
  15. [Lap91]
    Lapidus, M.L., Fractal drums, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. AMS 325 (1991), 465–529zbMATHCrossRefMathSciNetGoogle Scholar
  16. [Fal85]
    Falconer, K.J., The geometry of fractal sets. Cambridge Univ. Press, 1985Google Scholar
  17. [Hut81]
    Hutchinson, J.E., Fractals and self similarity. Indiana Univ. Math. J. 30 (1981), 713–747zbMATHCrossRefMathSciNetGoogle Scholar
  18. [HaS94]
    Han, Y.S. and Sawyer, E.T., Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Memoirs AMS 110, 530. Providence, AMS, 1994Google Scholar
  19. [EEv87]
    Edmunds, D.E. and Evans, W.D., Spectral theory and differential operators. Oxford Univ. Press, 1987Google Scholar
  20. [Lau95]
    Lau, K.-S., Self-similarity, Lp-spectrum and multifractal formalism. In: Fractal geometry and stochastics. Basel, Birkhäuser, 1995, 55–90Google Scholar
  21. [Per93]
    Peruggia, M., Discrete iterated function systems. Wellesley, Peters, 1993zbMATHGoogle Scholar
  22. [Edg90]
    Edgar, G.A., Measure, topology, and fractal geometry. New York, Springer 1990zbMATHGoogle Scholar
  23. [Str91]
    Strichartz, R.S., Wavelet expansions of fractal measures. J. Geom. Analysis 1 (1991), 269–289zbMATHMathSciNetGoogle Scholar
  24. [Tri78]
    Triebel, H., Interpolation theory, function spaces, differential operators. Amsterdam, North-Holland, 1978 (Sec. ed. Heidelberg, Barth, 1995)Google Scholar
  25. [Wal88]
    Wallin, H., New and old function spaces. In: Lect. Notes Math. 1302, Berlin, Springer, 1988, 99–114Google Scholar
  26. [Win95]
    Winkelvoss, H., Function spaces related to fractals. Intrinsic atomic characterizations of function spaces on domains. PhD-thesis, Jena, 1995Google Scholar
  27. [Str93b]
    Strichartz, R.S., Self-similar measures and their Fourier transforms III. Indiana Univ. Math. J. 42 (1993). 367–411zbMATHCrossRefMathSciNetGoogle Scholar
  28. [Tri92]
    Triebel, H., Theory of function spaces II. Basel, Birkhäuser, 1992zbMATHCrossRefGoogle Scholar
  29. [Kig95]
    Kigami, J., Laplacians on self-similar sets and their spectral distributions. In: Fractal geometry and stochastics. Basel, Birkhäuser, 1995, 221–238Google Scholar
  30. [Fal90]
    Falconer, K.J., Fractal geometry. Chichester, Wiley, 1990zbMATHGoogle Scholar
  31. [TrW96b]
    Triebel, H. and Winkelvoss, H., A Fourier analytical characterization of the Hausdorff dimension of a closed set and related Lebesgue spaces. Studia Math. 121 (1996), 149–166zbMATHMathSciNetGoogle Scholar
  32. [Net90]
    Netrusov, Yu.V., Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type. Proc. Steklov Inst. Math. 187 (1990), 185–203zbMATHGoogle Scholar
  33. [Kig93]
    Kigami, J., Harmonic metric and Dirichlet form on the Sierpinski gasket. In: Asymptotic problems in probabilistic theory: stochastic models and diffusion on fractals. Pitman Research Notes in Math. 283, London, Longman Sci. Techn., 1993, 201–218Google Scholar
  34. [DaS93]
    David, G. and Semmes, S., Analysis of and on uniformly rectifiable sets. Math. Surveys and Monographs 38, Providence, AMS, 1993Google Scholar
  35. [Str94]
    Strichartz, R.S., Self-similarity in harmonic analysis. J. Fourier Anal. Appl. 1 (1994), 1–37zbMATHCrossRefMathSciNetGoogle Scholar
  36. [Tri92*]
    Triebel, H., Higher analysis. Leipzig, Barth, 1992zbMATHGoogle Scholar
  37. [HKM93]
    Heinonen, J., Kilpeläinen, T. and Martio, O., Nonlinear potential theory of degenerate elliptic equations. Oxford Univ. Press, 1993Google Scholar
  38. [Net92a]
    Netrusov, Yu.V., Metric estimates of the capacities of sets in Besov spaces. Proc. Steklov Inst. Math. 190 (1992), 167–192Google Scholar
  39. [Dau92]
    Daubechies, I., Ten lectures on wavelets. Philadelphia, SIAM, 1992zbMATHGoogle Scholar
  40. [Tri83]
    Triebel, H., Theory of function spaces. Basel, Birkhäuser, 1983CrossRefGoogle Scholar
  41. [Dav95]
    Davies, E.B., Spectral theory and differential operators. Cambridge Univ. Press, 1995Google Scholar
  42. [RuS96]
    Runst, Th. and Sickel, W., Sobolev spaces of fractional order, Nemytzkij operators and nonlinear partial differential equations. Berlin, de Gruyter, 1996Google Scholar
  43. [SicT95]
    Sickel, W. and Triebel, H., Hölder inequalities and sharp embeddings in function spaces of B \(^{s_{pq}}\) and F \(^{s_{pq}}\) type. Z. Anal. Anwendungen 14 (1995), 105–140zbMATHMathSciNetGoogle Scholar
  44. [JoW84]
    Jonsson, A. and Wallin, H., Function spaces on subsets of Rn. Math. reports 2, 1, London, Harwood acad. publ., 1984Google Scholar
  45. [SaV96]
    Safarov, Yu. and Vassiliev, D., The asymptotic distribution of eigenvalues of partial differential operators. Translations Math. Monographs 155, Providence, AMS, 1996Google Scholar
  46. [Str90b]
    Strichartz, R.S., Self-similar measures and their Fourier transforms I. Indiana Univ. Math. J. 39 (1990), 797–817zbMATHCrossRefMathSciNetGoogle Scholar
  47. [Mey92]
    Meyer, Y., Wavelets and operators. Cambridge Univ. Press, 1992Google Scholar
  48. [Str90a]
    Strichartz, R.S., Fourier asymptotics of fractal measure. J. Funct. Analysis 89 (1990), 154–187zbMATHCrossRefMathSciNetGoogle Scholar
  49. [Jon93]
    Jonsson, A., Atomic decomposition of Besov spaces on closed sets. In: Function spaces, differential operators and non-linear analysis. Teubner-Texte Math. 133, Leipzig, Teubner, 1993, 285–289Google Scholar
  50. [BeS88]
    Bennett, C. and Sharpley, R., Interpolation of operators. Boston, Academic Press, 1988zbMATHGoogle Scholar
  51. [TrW95]
    Triebel, H. and Winkelvoss, H., The dimension of a closed subset of Rn and related function spaces. Acta Math. Hungarica 68 (1995), 117–133zbMATHCrossRefMathSciNetGoogle Scholar
  52. [Ste70]
    Stein, E.M., Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970Google Scholar
  53. [Net88]
    Netrusov, Yu.V., Embedding theorems for traces of Besov spaces and Lizorkin-Triebel spaces. Soviet Math. Dokl. 37 (1988), 270–273zbMATHMathSciNetGoogle Scholar
  54. [Bar88]
    Barnsley, M., Fractals everywhere. Boston, Academic Press, 1988zbMATHGoogle Scholar
  55. [Str93a]
    Strichartz, R.S., Self-similar measures and their Fourier transforms II. Trans. AMS 336 (1993), 335–361zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  1. 1.Mathematisches InstitutFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations