Skip to main content

Spectral Analysis and Geometry of Sub-Laplacian and Related Grushin-type Operators

  • Chapter
  • First Online:
Partial Differential Equations and Spectral Theory

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 211))

Abstract

In this article, we discuss three topics in the area of sub-Riemannian geometry and analysis.

Mathematics Subject Classification (2000). Primary 11M36; Secondary 35P10, 53D50

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [Adm-62] J.F. Adams, Vector fields on spheres, Annals of Math., 75 (1962), 603–632.

    Google Scholar 

  • [ABGR-09] A. Agrachev, U. Boscain, J.-P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal., 256 (2009), 2621–2655.

    Google Scholar 

  • [Ag-07] A. Agrachev, Rolling balls and octanions, Proc. Steklov Inst. Math., 258 (2007), 13–22.

    Google Scholar 

  • [ABS-08] A.A. Agrachev, U. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst., 20 (2008), 801–822.

    Google Scholar 

  • [AAR-99] G.E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia Math. Appl., vol. 71, Cambridge Univ. Press, 1999.

    Google Scholar 

  • [AB-08] N. Arcozzi and A. Baldi, From Grushin to Heisenberg via an isoperimetric problem, J. Math. Anal. Appl., 340 (2008), 165–174.

    Google Scholar 

  • [Ba-05] R.O. Bauer, Analysis of the horizontal Laplacian for the Hopf fibration, Forum Math., 17 (2005), 903–920.

    Google Scholar 

  • [BF1-08] W. Bauer and K. Furutani, Quantization operators on quadrics, Kyushu J. Math., 62 (2008), 221–258.

    Google Scholar 

  • [BF2-08] , , Zeta regularized determinant of the Laplacian for classes of spherical space forms, J. Geom. Phys., 58 (2008), 64–88.

    Google Scholar 

  • [BF3-08] , , Spectral analysis and geometry of a sub-Riemannian structure on S3 and S7, J. Geom. Phys., 58 (2008), 1693–1738.

    Google Scholar 

  • [BF4-10] , , Spectral zeta function of a sub-Laplacian on product sub- Riemannian manifolds and zeta-regularized determinant, J. Geom. Phy., 60 (2010), 1209–1234.

    Google Scholar 

  • [BFI] W. Bauer, K. Furutani and C. Iwasaki, Analytic continuation of spectral zeta functions of sub-Laplacians on a certain class of nilmanifolds, in preparation.

    Google Scholar 

  • [BG-98] R. Beals and P.C. Greiner, Calculus on Heisenberg manifolds, Ann. Math. Studies, 119 Princeton Univ. Press, Princeton, 1998.

    Google Scholar 

  • [BGG1-96] R. Beals, B. Gaveau and P.C. Greiner, The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemannian complexes, Adv. Math., 121(2) (1996), 288–345.

    Google Scholar 

  • [BGG2-00] , , , Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl., 79(9) (2000), 633–689.

    Google Scholar 

  • [BGG3-97] , , , Complex Hamiltonian mechanics and parametrises for subelliptic Laplacians, I,II,III, Bull. Sci. Math., 121 (1997), 1–36, 97–149, 195–259.

    Google Scholar 

  • [BGG4-96] , , , On a geometric formula for the fundamental solution of subelliptic Laplacians, Math. Nachr., 181 (1996), 81–163.

    Google Scholar 

  • [CC1-09] O. Calin and D.C. Chang, Sub-Riemannian geometry on the sphere S3, Can. J. Math., 61(4) (2009), 721–739.

    Google Scholar 

  • [CC2-09] , , Sub-Riemannian geometry, general theory and examples, Encyclopedia of Mathematics and its Applications, 126 Cambridge Univ. Press,2009.

    Google Scholar 

  • [CCFI-10] O. Calin, D.C. Chang, K. Furutani and C. Iwasaki, Heat kernels of elliptic and sub-elliptic operators, methods and techniques, to appear in Applied and Harmonic Analysis, Birkhäuser, 2010.

    Google Scholar 

  • [CL-02] D.C. Chang and S.Y. Li, A zeta function associated to the sub-Laplacian on the unit sphere in Cn, J. D’Analyse mathématique, 86 (2002), 25–48. [Ch-39] W.L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117(1) (1939), 98–105.

    Google Scholar 

  • [Eb-03] P. Eberlein, Riemannian submersions and lattices in 2-step nilpotent Lie groups, Comm. in Anal. Geom., 11(3) (2003), 441–448.

    Google Scholar 

  • [Fo-87] R. Forman, Functional determinants and geometry, Invent.Math., 88 (1987), 447–493.

    Google Scholar 

  • [Fu-06] K. Furutani, Heat kernels of the sub-Laplacian and Laplacian on nilpotent Lie groups, analysis, geometry and topology of elliptic operators, papers in honor of Krzysztof P. Wojciechowsky, (World Scientific, London-Singapore), (2006), 185–226.

    Google Scholar 

  • [FG-03] K. Furutani and S. de Gosson, Determinant of Laplacians on Heisenberg manifolds, J. Geom. Phys., 48 (2003), 438–479.

    Google Scholar 

  • [FI-06] K. Furutani and C. Iwasaki, Grushin operator and heat kernel on nilpotent Lie groups, Suurikaisekikenkyusho kokyuroku (Developments of Cartan geometry and related mathematical problems), 1502 (2006), 173–184.

    Google Scholar 

  • [Ga-77] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math., 139 (1977), 95– 153.

    Google Scholar 

  • [GW-86] C. Gordon and E. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 33 (1986), 253–271.

    Google Scholar 

  • [Hö1-67] L. Hörmander, Hypo-elliptic second order differential equations, ActaMath., 119 (1967), 147–171.

    Google Scholar 

  • [Hö2-79] L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math., 32 (1979), 359–443.

    Google Scholar 

  • [Hu-76] A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math., 56 (1976), 165–173.

    Google Scholar 

  • [Iw-94] C. Iwasaki, The asymptotic expansion of the fundamental solution for parabolic initial-boundary value problems and its application, Osaka J. Math., 31(3) (1994), 663–728.

    Google Scholar 

  • [II1-79] C. Iwasaki and N. Iwasaki, Parametrix for a degenerate parabolic equation, Proc. Japan Acad., 55 (1979), 237–240.

    Google Scholar 

  • [II2-81] C. Iwasaki and N. Iwasaki, Parametrix for a degenerate parabolic equation and its application to the asymptotic behavior of spectral functions for stationary problems, Publ. Res. Inst. Math. Sci., 17(2) (1981), 577–655.

    Google Scholar 

  • [Ju-01] V. Jurdjevic, Hamiltonian point of view of non-Euclidean geometry and elliptic functions, System Control Lett. 43 (2001), 25–41.

    Google Scholar 

  • [Kl-97] A. Klinger, New derivation of the Heisenberg kernel, Comm. Partial Differential Equations, 22 (1997), 2051–2060.

    Google Scholar 

  • [La-89] D.F. Lawden, Elliptic function and applications, Applied Mathematical Sciences 80, Springer-Verlag. New York, 1989.

    Google Scholar 

  • [LM-89] M.B. Lawson and M.-L. Michelson, Spin geometry, New Jersey, Princeton University Press, 1989.

    Google Scholar 

  • [LS-95] W. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics on a rank two distribution, Mem. Amer. Math. Soc. 118, 1995.

    Google Scholar 

  • [Mag-86] L. Magnin, Sur les algébres de Lie nilpotentes de dimension ≤ 7, J. Geom. Phys., 3, (1986), 119–144.

    Google Scholar 

  • [Me-71] A. Melin, Lower bounds for pseudo-differential operators, Ark. Mat., 9 (1971), 117–140.

    Google Scholar 

  • [MP-49] S. Minakshisundaram and A. Pleijel, Some properties of the eigenvalues of the Laplace operator on Riemannian manifolds, Canad. J. Math., 1 (1949), 242–256.

    Google Scholar 

  • [Mo1-94] R. Montgomery, Abnormal minimizers, SIAM J. Control Optim., 32(6) (1994), 1605–1620.

    Google Scholar 

  • [Mo2-02] R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications, Math. Surv. Monogr. 91, Am. Math. Soc., Providence, RI, 2002.

    Google Scholar 

  • [Mu1-82] A. Muhamed, ´ Etude spectrale d’opérateurs hypoelliptiques à charactéristiques multiples. I, Ann. Inst. Fourier (Grenoble), 32 no. 3, ix (1982), 39–90.

    Google Scholar 

  • [Mu2-83] , ´ Etude spectrale d’operateurs hypoellipitques à charactéristiques multiples. II, Comm. Part. Diff. Equ. 8(3) (1983), 247–316.

    Google Scholar 

  • [NC-95] C. Nash and D. O’Connor, Determinants of Laplacians on lens spaces, J. Math. Phys., 36(3) (1995), 1462–1505.

    Google Scholar 

  • [Rag-72] M.S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York-Heidelberg-Berlin, 1972.

    Google Scholar 

  • [Ra-79] J.H. Rawnsley, A non-unitary pairing of polarization for the Kepler problem, Trans. Amer. Math. Soc., 250 (1979), 167–180.

    Google Scholar 

  • [RS-71] D.B. Ray and I.M. Singer, R-Torsion and the Laplacian on Riemannian manifolds, Adv. Math., 7 (1971), 145–210.

    Google Scholar 

  • [Sa-42] L.A. Santaló, On the isoperimetric inequality for surfaces of constant negative curvature, (Spanish) Rev. Univ. Tucumán, 3 (1942), 243–259.

    Google Scholar 

  • [Se-93] C. Seeley, 7-dimensional nilpotent Lie algebras, Trans. Amer. Math. Soc., 335 (1993), 479–496.

    Google Scholar 

  • [St-86] R.S. Strichartz, Sub-Riemannian geometry, J. Differential Geom., 24(2) (1986), 221–263.

    Google Scholar 

  • [Va-88] I. Vardi, Determinants of Laplacians and multiple Gamma functions, SIAM J. Math. Anal., 19 (1988), 493 507.

    Google Scholar 

  • [WW-58] E.T. Whittaker and G.N. Watson, A course of modern analysis, Cambridge Univ. Press, London, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Bauer, W., Furutani, K., Iwasaki, C. (2011). Spectral Analysis and Geometry of Sub-Laplacian and Related Grushin-type Operators. In: Demuth, M., Schulze, BW., Witt, I. (eds) Partial Differential Equations and Spectral Theory. Operator Theory: Advances and Applications(), vol 211. Springer, Basel. https://doi.org/10.1007/978-3-0348-0024-2_4

Download citation

Publish with us

Policies and ethics