Skip to main content

Quantum Semiconductor Models

  • Chapter
  • First Online:

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 211))

Abstract

We give an overview of analytic investigations of quantum semiconductor models, where we focus our attention on two classes of models: quantum drift diffusion models, and quantum hydrodynamic models. The key feature of those models is a quantum interaction term which introduces a perturbation term with higher-order derivatives into a system which otherwise might be seen as a fluid dynamic system. After a discussion of the modeling, we present the quantum drift diffusion model in detail, discuss various versions of this model, list typical questions and the tools how to answer them, and we give an account of the state-of-the-art of concerning this model. Then we discuss the quantum hydrodynamic model, which figures as an application of the theory of mixed-order parameter-elliptic systems in the sense of Douglis, Nirenberg, and Volevich. For various versions of this model, we give a unified proof of the local existence of classical solutions. Furthermore, we present new results on the existence as well as the exponential stability of steady states, with explicit description of the decay rate.

Mathematics Subject Classification (2000). Primary: 35J45, 35K35; Secondary: 76Y05, 35B40, 65M20.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Adams and J.J.F. Fournier. Sobolev spaces. 2nd ed. Pure and Applied Mathematics 140. New York, NY: Academic Press, 2003.

    Google Scholar 

  2. M.S. Agranovich. Non-self-adjoint problems with a parameter that are elliptic in the sense of Agmon-Douglis-Nirenberg. Funct. Anal. Appl., 24(1):5053, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.S. Agranovich. Elliptic boundary problems. Agranovich, M.S. (ed.) et al., Partial differential equations. IX: Elliptic boundary value problems. Transl. from the Russian. Berlin: Springer. Encycl. Math. Sci. 79, 1144, 1997.

    Google Scholar 

  4. M.S. Agranovich and M.I. Vishik. Elliptic problems with a parameter and parabolic systems of general form. Russ. Math. Surv., 19:53157, 1964.

    Article  MATH  Google Scholar 

  5. G. Ali, D. Bini, and S. Rionero. Global existence and relaxation limit for smooth solutions to the EulerPoisson model for semiconductors. SIAM J. Math. Anal., 32(3):572587, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Amann. Linear and quasilinear parabolic problems. Vol. 1: Abstract linear theory. Monographs in Mathematics. 89. Basel: Birkhäuser, 1995.

    Google Scholar 

  7. M.G. Ancona. Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B, 42(2):12221233, 1990.

    Article  MathSciNet  Google Scholar 

  8. M.G. Ancona. Density-gradient analysis of field emission from metals. Phys. Rev. B, 46(8):48744883, 1992.

    Article  Google Scholar 

  9. M.G. Ancona and G.J. Iafrate. Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B, 39(13):95369540, 1989.

    Article  Google Scholar 

  10. M.G. Ancona and K. Lilja. Multi-dimensional tunneling in density-gradient theory. J. Comput. Electr., 3:189192, 2004.

    Article  Google Scholar 

  11. M.G. Ancona and H. Tiersten. Macroscopic physics of the silicon inversion layer. Phys. Rev. B, 35(15):79597965, 1987.

    Article  Google Scholar 

  12. M.G. Ancona, Z. Yu, R.W. Dutton, P.J. Vande Voorde, M. Cao, and D. Vook. Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices, 47(12): 23102318, 2000.

    Article  Google Scholar 

  13. N. Ben Abdallah and A. Unterreiter. On the stationary quantum drift-diffusion model. Z. Angew. Math. Phys., 49(2):251275, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Bergh and J. Löfström. Interpolation spaces. An introduction. Grundlehren der mathematischen Wissenschaften. 223. Berlin: Springer, 1976.

    Google Scholar 

  15. P.L. Bhatnagar, E.P. Gross, and M. Krook. A model for collision processes in gases. I: Small amplitude processes in charged and neutral one-component systems. Phys. Rev., II. Ser., 94:511525, 1954.

    Google Scholar 

  16. P.M. Bleher, J.L. Lebowitz, and E.R. Speer. Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations. Commun. Pure Appl. Math., 47(7):923942, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  17. M.J. Cáceres, J.A. Carrillo, and G. Toscani. Long-time behavior for a nonlinear fourth-order parabolic equation. Trans. Am. Math. Soc., 357(3):11611175, 2005.

    Google Scholar 

  18. A.O. Caldeira and A.J. Leggett. Path integral approach to quantum Brownian motion. Physica A, 121:587616, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.A. Carrillo, J. Dolbeault, I. Gentil, and A. Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete Contin. Dyn. Syst., Ser. B, 6(5):10271050, 2006.

    Google Scholar 

  20. G. Cassano, C. de Falco, C. Giulianetti, and R. Sacco. Numerical simulation of tunneling effects in nanoscale semiconductor devices using quantum corrected drift-diffusion models. Comput. Methods Appl. Mech. Engrg., 195(19-22):21932208, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Castella, L. Erdős, F. Frommlet, and P.A. Markowich. Fokker-Planck equations as scaling limits of reversible quantum systems. J. Stat. Phys., 100(3-4):543601, 2000.

    Article  MATH  Google Scholar 

  22. L. Chen and M. Dreher. The viscous model of quantum hydrodynamics in several dimensions. Math. Models Methods Appl. Sci., 17(7):10651093, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Chen and M. Dreher. Viscous quantum hydrodynamics and parameter-elliptic systems, 2010.

    Google Scholar 

  24. L. Chen and Q. Ju. Existence of weak solution and semiclassical limit for quantum drift-diffusion model. Z. Angew. Math. Phys., 58(1):115, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Chen and Q. Ju. The semiclassical limit in the quantum drift-diffusion equations with isentropic pressure. Chin. Ann. Math., Ser. B, 29(4):369384, 2008.

    Google Scholar 

  26. X. Chen. The global existence and semiclassical limit of weak solutions to multidimensional quantum drift-diffusion model. Adv. Nonlinear Stud., 7(4):651670, 2007.

    MATH  MathSciNet  Google Scholar 

  27. X. Chen and L. Chen. Initial time layer problem for quantum drift-diffusion model. J. Math. Anal. Appl., 343(1):6480, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  28. X. Chen and L. Chen. The bipolar quantum drift-diffusion model. Acta Math. Sinica, 25(4):617638, 2009.

    Article  MATH  Google Scholar 

  29. X. Chen, L. Chen, and H. Jian. The existence and long-time behavior of weak solution to bipolar quantum drift-diffusion model. Chin. Ann. Math., Ser. B, 28(6):651 664, 2007.

    Google Scholar 

  30. X. Chen, L. Chen, and H. Jian. The Dirichlet problem of the quantum drift-diffusion model. Nonlinear Anal., Theory Methods Appl., 69(9(A)):30843092, 2008.

    Google Scholar 

  31. X. Chen, L. Chen, and H. Jian. Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model. Nonlinear Anal., Real World Appl., 10(3):13211342, 2009.

    Google Scholar 

  32. X.Q. Chen and L. Chen. The DirichletNeumann problem of quantum driftdiffusion model. submitted.

    Google Scholar 

  33. S. Cordier. Global solutions to the isothermal EulerPoisson plasma model. Appl. Math. Lett., 8(1):1924, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. Courant and K.O. Friedrichs. Supersonic flow and shock waves. Reprint of the ed. published by Interscience Publishers, New York. Applied Mathematical Sciences. Vol. 21. New York: Springer, 1976.

    Google Scholar 

  35. C. de Falco, J.W. Jerome, and R. Sacco. Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation. J. Comput. Phys., 228(5):17701789, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Degond, S. Gallego, and F. Méhats. An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes. J. Comput. Phys., 221(1):226 249, 2007.

    Google Scholar 

  37. P. Degond, F. Méhats, and C. Ringhofer. Quantum energy-transport and driftdiffusion models. J. Stat. Phys., 118(3-4):625667, 2005.

    Google Scholar 

  38. P. Degond and C. Ringhofer. Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys., 112(3-4):587628, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  39. R. Denk, M. Hieber, and J. Prüss. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc., 788:114 p., 2003.

    Google Scholar 

  40. B. Derrida, J.L. Lebowitz, E.R. Speer, and H. Spohn. Dynamics of an anchored Toom interface. J. Phys. A, Math. Gen., 24(20):48054834, 1991.

    Google Scholar 

  41. J. Dolbeault, I. Gentil, and A. Jüngel. A logarithmic fourth-order parabolic equation and related logarithmic Sobolev inequalities. Commun. Math. Sci., 4(2):275290, 2006.

    Google Scholar 

  42. A. Douglis and L. Nirenberg. Interior estimates for elliptic systems of partial differential equations. Commun. Pure Appl. Math., 8:503538, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Dreher. The transient equations of viscous quantum hydrodynamics. Math. Meth. Appl. Sci., 31:391414, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Dreher. Resolvent estimates for DouglisNirenberg systems. J. Evol. Equ., 9:829844, 2009.

    Article  MathSciNet  Google Scholar 

  45. D.G. Ebin. Viscous fluids in a domain with frictionless boundary. In T.M. Rassias, editor, Global analysis analysis on manifolds, dedic. M. Morse, pages 93110. Teubner-Texte zur Mathematik, Bd. 57. Leipzig: Teubner, 1983.

    Google Scholar 

  46. Y.V. Egorov and B.-W. Schulze. Pseudo-differential operators, singularities, applications. Operator Theory: Advances and Applications. 93. Basel: Birkhäuser, 1997.

    Google Scholar 

  47. M. Faierman. Eigenvalue asymptotics for a boundary problem involving an elliptic system. Math. Nachr., 279(11):11591184, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  48. S. Gallego and F. Méhats. Entropic discretization of a quantum drift-diffusion model. SIAM J. Numer. Anal., 43(5):18281849 (electronic), 2005.

    Google Scholar 

  49. I. Gamba, A. Jüngel, and A. Vasseur. Global existence of solutions to onedimensional viscous quantum hydrodynamic equations. to appear, 2009.

    Google Scholar 

  50. I.M. Gamba, M.P. Gualdani, and P. Zhang. On the blowing up of solutions to quantum hydrodynamic models on bounded domains. Monatsh. Math., 157(1):3754, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  51. C.L. Gardner. The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math., 54(2):409427, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  52. I. Gasser and P.A. Markowich. Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptotic Anal., 14(2):97116, 1997.

    MATH  MathSciNet  Google Scholar 

  53. I. Gasser, P.A. Markowich, D. Schmidt, and A. Unterreiter. Macroscopic theory of charged quantum fluids. In Marcati, P. (ed.) et al., Mathematical problems in semiconductor physics. Proceedings of a conference on the mathematical modeling of semiconductor structures, held in Rome, Italy, December 1993. Harlow: Longman. Pitman Res. Notes Math. Ser. 340, 4275. Longman, 1995.

    Google Scholar 

  54. U. Gianazza, G. Savaré, and G. Toscani. TheWasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal., 194:133220, 2009.

    Google Scholar 

  55. J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math., 18:697715, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  56. M. Gualdani, A. Jüngel, and G. Toscani. Exponential decay in time of solutions of the viscous quantum hydrodynamic equations. Appl. Math. Lett., 16(8):12731278, 2003.

    Google Scholar 

  57. M.P. Gualdani and A. Jüngel. Analysis of the viscous quantum hydrodynamic equations for semiconductors. Eur. J. Appl. Math., 15(5):577595, 2004.

    Google Scholar 

  58. M.P. Gualdani, A. Jüngel, and G. Toscani. A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions. SIAM J. Math. Anal., 37(6):17611779, 2006.

    Google Scholar 

  59. T. Höher, A. Schenk, A. Wettstein, and W. Fichtner. On density-gradient modeling of tunneling through insulators. In Int. Conf. Simul. Semicond. Process. Devices (SISPAD 2002), pages 275278, 2002.

    Google Scholar 

  60. L. Hörmander. Pseudo-differential operators. Commun. Pure Appl. Math., 18:501 517, 1965.

    Google Scholar 

  61. L. Hörmander. The analysis of linear partial differential operators. Classics in Mathematics. Berlin: Springer, 2007.

    Google Scholar 

  62. L. Hsiao and H.-L. Li. The well-posedness and asymptotics of multi-dimensional quantum hydrodynamics. Acta Math. Sci., 29B(3):552568, 2009.

    MathSciNet  Google Scholar 

  63. L. Hsiao and S. Wang. Quasineutral limit of a time-dependent drift-diffusion- Poisson model for p-n junction semiconductor devices. J. Differ. Equations, 225(2):411439, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  64. F. Huang, H.-L. Li, and A. Matsumura. Existence and stability of steady-state of one-dimensional quantum hydrodynamic system for semiconductors. J. Differ. Equations, 225(1):125, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  65. F. Jochmann. Global weak solutions of the one-dimensional hydrodynamic model for semiconductors. Math. Models Methods Appl. Sci., 3(6):759788, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  66. Q.C. Ju and L. Chen. Semiclassical limit for bipolar quantum drift-diffusion model. submitted.

    Google Scholar 

  67. A. Jüngel. Quasi-hydrodynamic semiconductor equations. Progress in Nonlinear Differential Equations and their Applications. 41. Basel: Birkhäuser, 2001.

    Google Scholar 

  68. A. Jüngel. Global weak solutions to compressible NavierStokes equations for quantum fluids. Preprint, 2009.

    Google Scholar 

  69. A. Jüngel. Transport equations for semiconductors. Lecture Notes in Physics. 773. Berlin: Springer, 2009.

    Google Scholar 

  70. A. Jüngel and H.-L. Li. Quantum Euler-Poisson systems: existence of stationary states. Arch. Math., Brno, 40(4):435456, 2004.

    Google Scholar 

  71. A. Jüngel, H.-L. Li, and A. Matsumura. The relaxation-time limit in the quantum hydrodynamic equations for semiconductors. J. Differ. Equations, 225(2):440464, 2006.

    Google Scholar 

  72. A. Jüngel, M.C. Mariani, and D. Rial. Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Methods Appl. Sci., 12(4):485495, 2002.

    Google Scholar 

  73. A. Jüngel and D. Matthes. An algorithmic construction of entropies in higher-order nonlinear PDEs. Nonlinearity, 19(3):633659, 2006.

    Google Scholar 

  74. A. Jüngel and D. Matthes. The DerridaLebowitzSpeerSpohn equation: Existence, nonuniqueness, and decay rates of the solutions. SIAM J. Math. Anal., 39(6):19962015, 2008.

    Google Scholar 

  75. A. Jüngel and J. Milisíc. Physical and numerical viscosity for quantum hydrodynamics. Commun. Math. Sci., 5(2):447471, 2007.

    Google Scholar 

  76. A. Jüngel and R. Pinnau. Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems. SIAM J. Math. Anal., 32(4):760777, 2000.

    Google Scholar 

  77. A. Jüngel and R. Pinnau. A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system. SIAM J. Numer. Anal., 39(2):385406, 2001.

    Google Scholar 

  78. A. Jüngel and R. Pinnau. Convergent semidiscretization of a nonlinear fourth order parabolic system. Math. Mod. Num. Anal., 37(2):277289, 2003.

    Google Scholar 

  79. A. Jüngel and S. Tang. Numerical approximation of the viscous quantum hydrodynamic model for semiconductors. Appl. Numer. Math., 56(7):899915, 2006.

    Google Scholar 

  80. A. Jüngel and G. Toscani. Exponential time decay of solutions to a nonlinear fourthorder parabolic equation. Z. Angew. Math. Phys., 54(3):377386, 2003.

    Google Scholar 

  81. A. Jüngel and I. Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete Contin. Dyn. Syst., Ser. B, 8(4):861877, 2007.

    Google Scholar 

  82. A. Jüngel and I. Violet. The quasineutral limit in the quantum drift-diffusion equation. Asymptotic Anal., 53(3):139157, 2007.

    Google Scholar 

  83. J. Kačur. Method of Rothe in evolution equations. Teubner-Texte zur Mathematik, Bd. 80. Leipzig: Teubner, 1985.

    Google Scholar 

  84. J.J. Kohn and L. Nirenberg. An algebra of pseudo-differential operators. Commun. Pure Appl. Math., 18:269305, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  85. H. Kumano-go. Pseudo-differential operators. Cambridge. The MIT Press, 1982.

    Google Scholar 

  86. P. Lax. Shock waves and entropy. Contrib. Nonlin. Functional Analysis, Proc. Sympos. Univ. Wisconsin, Madison 1971, 603634, 1971.

    Google Scholar 

  87. C.D. Levermore. Moment closure hierarchies for kinetic theories. J. Stat. Phys., 83(5-6):10211065, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  88. H.-L. Li and C.-K. Lin. Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors. Commun. Math. Phys., 256(1):195212, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  89. H.-L. Li and P. Marcati. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Commun. Math. Phys., 245:215247, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  90. H.-L. Li, G. Zhang, and K. Zhang. Algebraic time decay for the bipolar quantum hydrodynamic model. Math. Models Methods Appl. Sci., 18(6):859881, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  91. H.-L. Li, G.-J. Zhang, M. Zhang, and C. Hao. Long-time self-similar asymptotic of the macroscopic quantum models. J. Math. Phys., 49(7):073503, 2008.

    Google Scholar 

  92. A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications. 16. Basel: Birkhäuser, 1995.

    Google Scholar 

  93. E. Madelung. Quantentheorie in hydrodynamischer Form. Z. f. Physik, 40:322326, 1926.

    Article  Google Scholar 

  94. P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Ration. Mech. Anal., 129(2):129145, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  95. P.A. Markowich. On steady state EulerPoisson models for semiconductors. Z. Angew. Math. Phys., 42(3):389407, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  96. P.A. Markowich, C.A. Ringhofer, and C. Schmeiser. Semiconductor equations. Berlin: Springer, 1990.

    Google Scholar 

  97. H. Morris and A. Limon. Quantum corrections: a multilevel solver for the densitygradient equation. Int. J. Comput. Sci. Eng., 2(3-4):119128, 2006.

    Article  Google Scholar 

  98. S. Nishibata and M. Suzuki. Initial boundary value problems for a quantum hydrodynamic model of semiconductors: asymptotic behaviors and classical limits. J. Differ. Equations, 244(4):836874, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  99. S. Odanaka. A high-resolution method for quantum confinement transport simulations in MOSFETs. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(1):8085, 2007.

    Article  Google Scholar 

  100. R. Pinnau. A review on the quantum drift diffusion model. Transp. Theory Stat. Phys., 31(4-6):367395, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  101. R. Pinnau and J.M. Ruiz V. Convergent finite element discretizations of the density gradient equation for quantum semiconductors. J. Comput. Appl. Math., 223(2):790800, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  102. F. Poupaud, M. Rascle, and J.P. Vila. Global solutions to the isothermal Euler Poisson system with arbitrarily large data. J. Differ. Equations, 123(1):93121, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  103. M. Reed and B. Simon. Methods of modern mathematical physics. 14. New York- London: Academic Press, 19721979.

    Google Scholar 

  104. C. Ringhofer. Computational methods for semiclassical and quantum transport in semiconductor devices. Iserles, A. (ed.), Acta Numerica Vol. 6, 1997. Cambridge: Cambridge University Press. 485521, 1997.

    Google Scholar 

  105. Y.A. Rojtberg and Z.G. Sheftel. Boundary value problems with a parameter in Lp for systems elliptic in the sense of Douglis-Nirenberg. Ukr. Math. J., 19:100104, 1967.

    Article  MATH  Google Scholar 

  106. V. Romano, M. Torrisi, and R. Tracin`a. Approximate solutions to the quantum drift-diffusion model of semiconductors. J. Math. Phys., 48(2):023501, 15, 2007.

    Google Scholar 

  107. R.T. Seeley. Integro-differential operators on vector bundles. Trans. Am. Math. Soc., 117:167204, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  108. R.T. Seeley. Interpolation in Lp with boundary conditions. Stud. Math., 44:4760, 1972.

    MATH  MathSciNet  Google Scholar 

  109. M. Shubin. Pseudodifferential operators and spectral theory. Berlin: Springer, 2001.

    Google Scholar 

  110. C.G. Simader. On Dirichlet s boundary value problem. An Lp-theory based on a generalization of Garding s inequality. Lecture Notes in Mathematics. 268. Berlin: Springer, 1972.

    Google Scholar 

  111. J. Simon. Compact sets in the space Lp(0, T;B). Ann. Mat. Pura Appl., IV. Ser., 146:6596, 1987.

    Google Scholar 

  112. J. Smoller. Shock waves and reaction-diffusion equations. 2nd ed. Grundlehren der Mathematischen Wissenschaften. 258. New York: Springer, 1994.

    Google Scholar 

  113. M.E. Taylor. Pseudodifferential operators. Princeton Mathematical Series, 34, 1981.

    Google Scholar 

  114. F. Tréves. Introduction to pseudodifferential and Fourier integral operators. Vol. 1: Pseudodifferential operators. Vol. 2: Fourier integral operators. The University Series in Mathematics. New York, London: Plenum Press, 1980.

    Google Scholar 

  115. S. Uno, H. Abebe, and E. Cumberbatch. Analytical solutions to quantum driftdiffusion equations for quantum mechanical modeling of MOS structures. In Solid State Devices and Materials, Kobe, Japan, 2005.

    Google Scholar 

  116. W. van Roosbroeck. Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Techn. J., 29:560607, 1950.

    Google Scholar 

  117. L.R. Volevich. A problem of linear programming arising in differential equations. Usp. Mat. Nauk., 18(3):155162, 1963.

    MATH  Google Scholar 

  118. J. Watling, A. Brown, A. Asenov, A. Svizhenko, and M. Anantram. Simulation of direct source-to-drain tunnelling using the density gradient formalism: Nonequilibrium Greens function calibration. In Int. Conf. Simul. Semicond. Process. Devices (SISPAD 2002), pages 267270, 2002.

    Google Scholar 

  119. J.Watling, A.R. Brown, and A. Asenov. Can the density gradient approach describe the source-drain tunnelling in decanano double-gate MOSFETs? J. Comp. Elec., 1(1-2):289293, 2002.

    Article  Google Scholar 

  120. F.B. Weissler. Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal., 37:218234, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  121. E.P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., II. Ser., 40:749759, 1932.

    Google Scholar 

  122. L.-M. Yeh. Well-posedness of the hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 19(18):14891507, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  123. G. Zhang, H.-L. Li, and K. Zhang. Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors. J. Differ. Equations, 245(6): 14331453, 2008.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Chen, L., Dreher, M. (2011). Quantum Semiconductor Models. In: Demuth, M., Schulze, BW., Witt, I. (eds) Partial Differential Equations and Spectral Theory. Operator Theory: Advances and Applications(), vol 211. Springer, Basel. https://doi.org/10.1007/978-3-0348-0024-2_1

Download citation

Publish with us

Policies and ethics