Advertisement

Hilbert Bundles and Flat Connexions over Hermitian Symmetric Domains

  • Harald Upmeier
Part of the Operator Theory: Advances and Applications book series (OT, volume 210)

Abstract

We study Hilbert spaces of holomorphic functions, generalizing the Fock spaces of entire functions, in the general setting of hermitian symmetric domains and Jordan algebras, using the concept of projectively flat connexion on a Hilbert subbundle.

Mathematics Subject Classification (2000)

Primary 47B35 econdary 32M15 Keywords Fock spaces connexions symmetric domains Jordan algebras. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] J. Arazy, H. Upmeier, Boundary measures for symmetric domains and integral formulas for the discrete Wallach points. Int. Equ. Op. Th. 47 (2003), 375–434.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Axelrod, S. Della Pietra, E. Witten, Geometric quantization of Chern-Simons gauge theory. J. Diff. Geom. 33 (1991), 787–902.zbMATHMathSciNetGoogle Scholar
  3. [3]
    H. Ding, K. Gross, R. Kunze, D. Richards, Bessel functions on boundary orbits and singular holomorphic representations. Proc. Symp. Pure Math. 68 (2000), 225–254.MathSciNetGoogle Scholar
  4. [4]
    A. Erdelyi et al., Higher Transcendental Functions II. McGraw-Hill, 1953.Google Scholar
  5. [5]
    J. Faraut, A. Korányi, Analysis on Symmetric Cones. Clarendon Press, Oxford 1994.zbMATHGoogle Scholar
  6. [6]
    J. Faraut, A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains. J. Funct. Anal. 88 (1990), 64–89.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    W. Kirwin, S. Wu, Geometric quantization, parallel transport and the Fourier transform. Commun. Math. Phys. 266 (2006), 577–594.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products. Acad. Press 2000.Google Scholar
  9. [9]
    W. Kirwin, S. Wu, Geometric quantization, parallel transport and the Fourier transform. Commun. Math. Phys. 266 (2006), 577–594.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    O. Loos, Bounded Symmetric Domains and Jordan Pairs. Univ. of California, Irvine, 1977.Google Scholar
  11. [11]
    J. Peetre, The Fock bundle. Preprint, Lund University.Google Scholar
  12. [12]
    W. Rudin, Function Theory in the Unit Ball of ℂ n. Springer Grundlehren Vol. 241, 1980.Google Scholar
  13. [13]
    S. Sahi, Explicit Hilbert spaces for certain unipotent representations. Invent. Math. 110 (1992), 409–418.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    H. Upmeier, Toeplitz Operators and Index Theory in Several Complex Variables. OT 81, Birkhäuser 1996.Google Scholar
  15. [15]
    H. Upmeier, Projectively flat Hilbert bundles on Jordan varieties. Preprint.Google Scholar
  16. [16]
    Z. Yan, Differential operators and function spaces. Contemp. Math 142 (1993), 121–142.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Harald Upmeier
    • 1
  1. 1.Fachbereich MathematikPhilipps-UniversitätMarburgGermany

Personalised recommendations