Skip to main content

Antifolates: Pyrimethamine, Proguanil, Sulphadoxine and Dapsone

  • Chapter
  • First Online:
Book cover Treatment and Prevention of Malaria

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

The inhibition or disruption of folate metabolism remains an attractive target for the discovery of new antimalarial drugs. The importance of this pathway was proved in the 1940s with the discovery of the triazine proguanil. Proguanil is converted in vivo to the active metabolite, cycloguanil, an inhibitor of the dihydrofolate reductase enzyme. Proguanil has mainly been used for prophylaxis and currently is used in combination with atovaquone (Malarone®) for this purpose. Pyrimethamine was discovered based on its similarity to cycloguanil, and has been combined with the sulpha drug sulphadoxine. This combination of pyrimethamine/sulphadoxine has been the drug of choice to replace chloroquine in the treatment of uncomplicated malaria. However, resistance to pyrimethamine/sulphadoxine is now common, and its use is now restricted to the treatment of malaria in pregnancy, and “intermittent preventive treatment.” Efforts are under way to discover and develop new antifolates. In this chapter, I summarize our knowledge of folate metabolism in the malarial parasite, and discuss the role and place of antifolates in the treatment of malaria and new strategies of folate disruption as a drug target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nzila A, Ward SA, Marsh K, Sims PF, Hyde JE (2005) Comparative folate metabolism in humans and malaria parasites (part II): activities as yet untargeted or specific to Plasmodium. Trends Parasitol 21:334–339

    Article  PubMed  CAS  Google Scholar 

  2. Nzila A, Ward SA, Marsh K, Sims PF, Hyde JE (2005) Comparative folate metabolism in humans and malaria parasites (part I): pointers for malaria treatment from cancer chemotherapy. Trends Parasitol 21:292–298

    Article  PubMed  CAS  Google Scholar 

  3. Hyde JE (2007) Targeting purine and pyrimidine metabolism in human apicomplexan parasites. Curr Drug Targets 8:31–47

    Article  PubMed  CAS  Google Scholar 

  4. Dittrich S, Mitchell SL, Blagborough AM, Wang Q, Wang P, Sims PF, Hyde JE (2008) An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites. Mol Microbiol 67:609–618

    Article  PubMed  CAS  Google Scholar 

  5. Michel R (1968) Comparative study of the association of sulfalene and pyrimethamine and of sulfalene alone in mass chemoprophylaxis of malaria. Med Trop (Mars) 28:488–494

    CAS  Google Scholar 

  6. Bushby SR (1969) Combined antibacterial action in vitro of trimethoprim and sulphonamides. The in vitro nature of synergy. Postgrad Med J 45(Suppl):10–18

    PubMed  CAS  Google Scholar 

  7. Curd FHS, Davey DG, Rose FL (1945) Study on synthetic antimalarial drugs. X. Some biguanide derivatives as new types of antimalarial substances with both therapeutic and causal prophylactic activity. Ann Trop Med Parasitol 39:208–216

    PubMed  CAS  Google Scholar 

  8. Carrington HC, Crowther AF, Davey DG, Levi AA, Rose FL (1951) A metabolite of paludrine with high antimalarial activity. Nature 168:1080

    Article  PubMed  CAS  Google Scholar 

  9. Wernsdorfer WH (1990) Chemoprophylaxis of malaria: underlying principles and their realization. Med Trop (Mars) 50:119–124

    CAS  Google Scholar 

  10. Nzila A (2006) The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J Antimicrob Chemother 57:1043–1054

    Article  PubMed  CAS  Google Scholar 

  11. Mutabingwa TK, Maxwell CA, Sia IG, Msuya FH, Mkongewa S, Vannithone S, Curtis J, Curtis CF (2001) A trial of proguanil-dapsone in comparison with sulfadoxine-pyrimethamine for the clearance of Plasmodium falciparum infections in Tanzania. Trans R Soc Trop Med Hyg 95:433–438

    Article  PubMed  CAS  Google Scholar 

  12. Krudsood S, Imwong M, Wilairatana P, Pukrittayakamee S, Nonprasert A, Snounou G, White NJ, Looareesuwan S (2005) Artesunate-dapsone-proguanil treatment of falciparum malaria: genotypic determinants of therapeutic response. Trans R Soc Trop Med Hyg 99:142–149

    Article  PubMed  CAS  Google Scholar 

  13. Nakato H, Vivancos R, Hunter PR (2007) A systematic review and meta-analysis of the effectiveness and safety of atovaquone proguanil (Malarone) for chemoprophylaxis against malaria. J Antimicrob Chemother 60:929–936

    Article  PubMed  CAS  Google Scholar 

  14. Falco EA, Goodwin LG, Hitchings GH, Rollo IM, Russell PB (1951) 2:4-diaminopyrimidines – a new series of antimalarials. Br J Pharmacol Chemother 6:185–200

    Article  PubMed  CAS  Google Scholar 

  15. Peters W (1987) Experimental resistance IV: dihydrofolate reductase inhibitors and drugs with related activities. In: Peters W (ed) Chemotherapy and drug resistance in malaria. Academic, London, pp 481–521

    Google Scholar 

  16. Watkins WM, Mosobo M (1993) Treatment of Plasmodium falciparum malaria with pyrimethamine- sulfadoxine: selective pressure for resistance is a function of long elimination half-life. Trans R Soc Trop Med Hyg 87:75–78

    Article  PubMed  CAS  Google Scholar 

  17. Winstanley P, Watkins W, Muhia D, Szwandt S, Amukoye E, Marsh K (1997) Chlorproguanil/dapsone for uncomplicated Plasmodium falciparum malaria in young children: pharmacokinetics and therapeutic range. Trans R Soc Trop Med Hyg 91:322–327

    Article  PubMed  CAS  Google Scholar 

  18. Segal HE, Chinvanthananond P, Laixuthai B, Pearlman EJ, Hall AP, Phintuyothin P, Na-Nakorn A, Castaneda BF (1975) Comparison of diaminodiphenylsulphonepyrimethamine and sulfadoxine-pyrimethamine combinations in the treatment of falciparum malaria in Thailand. Trans R Soc Trop Med Hyg 69:139–142

    Article  PubMed  CAS  Google Scholar 

  19. Peters W (1987) Resistance in human malaria III: dihydrofolate reductase inhibitors. In: Peters W (ed) Chemotherapy and drug resistance in malaria. Academic, London, pp 593–658

    Google Scholar 

  20. Gregson A, Plowe CV (2005) Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57:117–145

    Article  PubMed  CAS  Google Scholar 

  21. Sibley CH, Hyde JE, Sims PF, Plowe CV, Kublin JG, Mberu EK, Cowman AF, Winstanley PA, Watkins WM, Nzila AM (2001) Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 17:582–588

    Article  PubMed  CAS  Google Scholar 

  22. Nosten F, White NJ (2007) Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77:181–192

    PubMed  CAS  Google Scholar 

  23. Grobusch MP, Egan A, Gosling RD, Newman RD (2007) Intermittent preventive therapy for malaria: progress and future directions. Curr Opin Infect Dis 20:613–620

    Article  PubMed  Google Scholar 

  24. Grobusch MP, Gabor JJ, Aponte JJ, Schwarz NG, Poetschke M, Doernemann J, Schuster K, Koester KB, Profanter K, Borchert LB et al (2009) No rebound of morbidity following intermittent preventive sulfadoxine-pyrimethamine treatment of malaria in infants in Gabon. J Infect Dis 200:1658–1661

    Article  PubMed  CAS  Google Scholar 

  25. Aponte JJ, Schellenberg D, Egan A, Breckenridge A, Carneiro I, Critchley J, Danquah I, Dodoo A, Kobbe R, Lell B et al (2009) Efficacy and safety of intermittent preventive treatment with sulfadoxine-pyrimethamine for malaria in African infants: a pooled analysis of six randomised, placebo-controlled trials. Lancet 374:1533–1542

    Article  PubMed  CAS  Google Scholar 

  26. Gosling RD, Gesase S, Mosha JF, Carneiro I, Hashim R, Lemnge M, Mosha FW, Greenwood B, Chandramohan D (2009) Protective efficacy and safety of three antimalarial regimens for intermittent preventive treatment for malaria in infants: a randomised, double-blind, placebo-controlled trial. Lancet 374:1521–1532

    Article  PubMed  CAS  Google Scholar 

  27. Briand V, Bottero J, Noel H, Masse V, Cordel H, Guerra J, Kossou H, Fayomi B, Ayemonna P, Fievet N et al (2009) Intermittent treatment for the prevention of malaria during pregnancy in Benin: a randomized, open-label equivalence trial comparing sulfadoxine-pyrimethamine with mefloquine. J Infect Dis 200:991–1001

    Article  PubMed  CAS  Google Scholar 

  28. Cisse B, Cairns M, Faye E, O ND, Faye B, Cames C, Cheng Y, M ND, Lo AC, Simondon K et al (2009) Randomized trial of piperaquine with sulfadoxine-pyrimethamine or dihydroartemisinin for malaria intermittent preventive treatment in children. PLoS One 4:e7164

    Article  PubMed  Google Scholar 

  29. Diaz DS, Kozar MP, Smith KS, Asher CO, Sousa JC, Schiehser GA, Jacobus DP, Milhous WK, Skillman DR, Shearer TW (2008) Role of specific cytochrome P450 isoforms in the conversion of phenoxypropoxybiguanide analogs in human liver microsomes to potent antimalarial dihydrotriazines. Drug Metab Dispos 36:380–385

    Article  PubMed  CAS  Google Scholar 

  30. Kiara SM, Okombo J, Masseno V, Mwai L, Ochola I, Borrmann S, Nzila A (2009) In vitro activity of antifolate and polymorphism in dihydrofolate reductase of Plasmodium falciparum isolates from the Kenyan coast: emergence of parasites with Ile-164-Leu mutation. Antimicrob Agents Chemother 53:3793–3798

    Article  PubMed  CAS  Google Scholar 

  31. Nzila-Mounda A, Mberu EK, Sibley CH, Plowe CV, Winstanley PA, Watkins WM (1998) Kenyan Plasmodium falciparum field isolates: correlation between pyrimethamine and chlorcycloguanil activity in vitro and point mutations in the dihydrofolate reductase domain. Antimicrob Agents Chemother 42:164–169

    PubMed  CAS  Google Scholar 

  32. Tiono AB, Dicko A, Ndububa DA, Agbenyega T, Pitmang S, Awobusuyi J, Pamba A, Duparc S, Goh LE, Harrell E et al (2009) Chlorproguanil-dapsone-artesunate versus chlorproguanil-dapsone: a randomized, double-blind, phase III trial in African children, adolescents, and adults with uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg 81:969–978

    Article  PubMed  CAS  Google Scholar 

  33. Premji Z, Umeh RE, Owusu-Agyei S, Esamai F, Ezedinachi EU, Oguche S, Borrmann S, Sowunmi A, Duparc S, Kirby PL et al (2009) Chlorproguanil-dapsone-artesunate versus artemether-lumefantrine: a randomized, double-blind phase III trial in African children and adolescents with uncomplicated Plasmodium falciparum malaria. PLoS One 4:e6682

    Article  PubMed  Google Scholar 

  34. Hastings MD, Bates SJ, Blackstone EA, Monks SM, Mutabingwa TK, Sibley CH (2002) Highly pyrimethamine-resistant alleles of dihydrofolate reductase in isolates of Plasmodium falciparum from Tanzania. Trans R Soc Trop Med Hyg 96:674–676

    Article  PubMed  CAS  Google Scholar 

  35. Nzila A, Ochong E, Nduati E, Gilbert K, Winstanley P, Ward S, Marsh K (2005) Why has the dihydrofolate reductase 164 mutation not consistently been found in Africa yet? Trans R Soc Trop Med Hyg 99:341–346

    Article  PubMed  CAS  Google Scholar 

  36. Ochong E, Nzila A, Kimani S, Kokwaro G, Mutabingwa T, Watkins W, Marsh K (2003) Molecular monitoring of the Leu-164 mutation of dihydrofolate reductase in a highly sulfadoxine/pyrimethamine-resistant area in Africa. Malar J 2:46

    Article  PubMed  Google Scholar 

  37. Roper C, Pearce R, Nair S, Sharp B, Nosten F, Anderson T (2004) Intercontinental spread of pyrimethamine-resistant malaria. Science 305:1124

    Article  PubMed  CAS  Google Scholar 

  38. Karema C, Imwong M, Fanello CI, Stepniewska K, Uwimana A, Nakeesathit S, Dondorp A, Day NP, White NJ (2010) Molecular correlates of high-level antifolate resistance in Rwandan children with Plasmodium falciparum malaria. Antimicrob Agents Chemother 54:477–483

    Article  PubMed  CAS  Google Scholar 

  39. Lynch C, Pearce R, Pota H, Cox J, Abeku TA, Rwakimari J, Naidoo I, Tibenderana J, Roper C (2008) Emergence of a dhfr mutation conferring high-level drug resistance in Plasmodium falciparum populations from southwest Uganda. J Infect Dis 197:1598–1604

    Article  PubMed  Google Scholar 

  40. McCollum AM, Poe AC, Hamel M, Huber C, Zhou Z, Shi YP, Ouma P, Vulule J, Bloland P, Slutsker L et al (2006) Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles. J Infect Dis 194:189–197

    Article  PubMed  CAS  Google Scholar 

  41. Hamel MJ, Poe A, Bloland P, McCollum A, Zhou Z, Shi YP, Ouma P, Otieno K, Vulule J, Escalante A et al (2008) Dihydrofolate reductase I164L mutations in Plasmodium falciparum isolates: clinical outcome of 14 Kenyan adults infected with parasites harbouring the I164L mutation. Trans R Soc Trop Med Hyg 102:338–345

    Article  PubMed  Google Scholar 

  42. Nair S, Miller B, Barends M, Jaidee A, Patel J, Mayxay M, Newton P, Nosten F, Ferdig MT, Anderson TJ (2008) Adaptive copy number evolution in malaria parasites. PLoS Genet 4:e1000243

    Article  PubMed  Google Scholar 

  43. Sandefur CI, Wooden JM, Quaye IK, Sirawaraporn W, Sibley CH (2007) Pyrimethamine-resistant dihydrofolate reductase enzymes of Plasmodium falciparum are not enzymatically compromised in vitro. Mol Biochem Parasitol 154:1–5

    Article  PubMed  CAS  Google Scholar 

  44. Sirawaraporn W, Sathitkul T, Sirawaraporn R, Yuthavong Y, Santi DV (1997) Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci USA 94:1124–1129

    Article  PubMed  CAS  Google Scholar 

  45. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323

    Article  PubMed  CAS  Google Scholar 

  46. Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP (1999) Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 119:113–125

    Article  PubMed  CAS  Google Scholar 

  47. Maiga O, Djimde AA, Hubert V, Renard E, Aubouy A, Kironde F, Nsimba B, Koram K, Doumbo OK, Le Bras J et al (2007) A shared Asian origin of the triple-mutant dhfr allele in Plasmodium falciparum from sites across Africa. J Infect Dis 196:165–172

    Article  PubMed  CAS  Google Scholar 

  48. McCollum AM, Basco LK, Tahar R, Udhayakumar V, Escalante AA (2008) Hitchhiking and selective sweeps of Plasmodium falciparum sulfadoxine and pyrimethamine resistance alleles in a population from central Africa. Antimicrob Agents Chemother 52:4089–4097

    Article  PubMed  CAS  Google Scholar 

  49. Mita T (2009) Origins and spread of pfdhfr mutant alleles in Plasmodium falciparum. Acta Trop 58:201–209

    CAS  Google Scholar 

  50. Mita T, Tanabe K, Takahashi N, Culleton R, Ndounga M, Dzodzomenyo M, Akhwale WS, Kaneko A, Kobayakawa T (2009) Indigenous evolution of Plasmodium falciparum pyrimethamine resistance multiple times in Africa. J Antimicrob Chemother 63:252–255

    Article  PubMed  CAS  Google Scholar 

  51. Certain LK, Briceno M, Kiara SM, Nzila AM, Watkins WM, Sibley CH (2008) Characteristics of Plasmodium falciparum dhfr haplotypes that confer pyrimethamine resistance, Kilifi, Kenya, 1987–2006. J Infect Dis 197:1743–1751

    Article  PubMed  Google Scholar 

  52. Roper C, Pearce R, Bredenkamp B, Gumede J, Drakeley C, Mosha F, Chandramohan D, Sharp B (2003) Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet 361:1174–1181

    Article  PubMed  Google Scholar 

  53. Pearce RJ, Pota H, Evehe MS, Ba el H, Mombo-Ngoma G, Malisa AL, Ord R, Inojosa W, Matondo A, Diallo DA et al (2009) Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med 6:e1000055

    Article  PubMed  Google Scholar 

  54. Carter JY, Loolpapit MP, Lema OE, Tome JL, Nagelkerke NJ, Watkins WM (2005) Reduction of the efficacy of antifolate antimalarial therapy by folic acid supplementation. Am J Trop Med Hyg 73:166–170

    PubMed  CAS  Google Scholar 

  55. Nduati E, Diriye A, Ommeh S, Mwai L, Kiara S, Masseno V, Kokwaro G, Nzila A (2008) Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer. Parasitol Res 102:1227–1234

    Article  PubMed  Google Scholar 

  56. Nzila A, Mberu E, Bray P, Kokwaro G, Winstanley P, Marsh K, Ward S (2003) Chemosensitization of Plasmodium falciparum by probenecid in vitro. Antimicrob Agents Chemother 47:2108–2112

    Article  PubMed  CAS  Google Scholar 

  57. Wang P, Wang Q, Sims PF, Hyde JE (2007) Characterisation of exogenous folate transport in Plasmodium falciparum. Mol Biochem Parasitol 154:40–51

    Article  PubMed  CAS  Google Scholar 

  58. Sowunmi A, Adedeji AA, Fateye BA, Babalola CP (2004) Plasmodium falciparum hyperparasitaemia in children. Risk factors, treatment outcomes, and gametocytaemia following treatment. Parasite 11:317–323

    PubMed  CAS  Google Scholar 

  59. Sowunmi A, Fehintola FA, Adedeji AA, Gbotosho GO, Falade CO, Tambo E, Fateye BA, Happi TC, Oduola AM (2004) Open randomized study of pyrimethamine-sulphadoxine vs. pyrimethamine-sulphadoxine plus probenecid for the treatment of uncomplicated Plasmodium falciparum malaria in children. Trop Med Int Health 9:606–614

    Article  PubMed  CAS  Google Scholar 

  60. Sowunmi A, Adedeji AA, Fateye BA, Fehintola FA (2004) Comparative effects of pyrimethamine-sulfadoxine, with and without probenecid, on Plasmodium falciparum gametocytes in children with acute, uncomplicated malaria. Ann Trop Med Parasitol 98:873–878

    Article  PubMed  CAS  Google Scholar 

  61. Tahar R, Basco LK (2007) Molecular epidemiology of malaria in Cameroon. XXVI. Twelve-year in vitro and molecular surveillance of pyrimethamine resistance and experimental studies to modulate pyrimethamine resistance. Am J Trop Med Hyg 77:221–227

    PubMed  CAS  Google Scholar 

  62. Fury MG, Krug LM, Azzoli CG, Sharma S, Kemeny N, Wu N, Kris MG, Rizvi NA (2005) A phase I clinical pharmacologic study of pralatrexate in combination with probenecid in adults with advanced solid tumors. Cancer Chemother Pharmacol 57:671–677

    Article  PubMed  Google Scholar 

  63. Dar O, Khan MS, Adagu I (2008) The potential use of methotrexate in the treatment of falciparum malaria: in vitro assays against sensitive and multidrug-resistant falciparum strains. Jpn J Infect Dis 61:210–211

    PubMed  CAS  Google Scholar 

  64. Fidock DA, Nomura T, Wellems TE (1998) Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. Mol Pharmacol 54:1140–1147

    PubMed  CAS  Google Scholar 

  65. Walter RD, Bergmann B, Kansy M, Wiese M, Seydel JK (1991) Pyrimethamin-resistant Plasmodium falciparum lack cross-resistance to methotrexate and 2,4-diamino-5-(substituted benzyl) pyrimidines. Parasitol Res 77:346–350

    Article  PubMed  CAS  Google Scholar 

  66. Langman LJ, Kapur BM (2006) Toxicology: then and now. Clin Biochem 39:498–510

    Article  PubMed  CAS  Google Scholar 

  67. Rozman KK, Doull J (2001) Paracelsus, Haber and Arndt. Toxicology 160:191–196

    Article  PubMed  CAS  Google Scholar 

  68. Nzila A, Okombo J, Becker RP, Chilengi R, Lang T, Niehues T (2010) Anticancer agents against malaria: time to revisit? Trends Parasitol 26:125–129

    Article  PubMed  CAS  Google Scholar 

  69. Chabner BA, Amrein P, Drucker B, Michealson M, Mitsiades C, Goss P, Ryan D, Ramachandra S, Richardson P, Supko J et al (2006) Antineoplastic agents. In: Brunton L (ed) The pharmacological basis of therapeutics 9/e. McGrwa-Hill, New York, pp 1315–1465

    Google Scholar 

  70. Niehues T, Lankisch P (2006) Recommendations for the use of methotrexate in juvenile idiopathic arthritis. Paediatr Drugs 8:347–356

    Article  PubMed  Google Scholar 

  71. Swierkot J, Szechinski J (2006) Methotrexate in rheumatoid arthritis. Pharmacol Rep 58:473–492

    PubMed  CAS  Google Scholar 

  72. Sheehy TW, Dempsey H (1970) Methotrexate therapy for Plasmodium vivax malaria. JAMA 214:109–114

    Article  PubMed  CAS  Google Scholar 

  73. Wildbolz A (1973) Methotrexate in the therapy of malaria. Ther Umsch 30:218–222

    PubMed  CAS  Google Scholar 

  74. Chladek J, Grim J, Martinkova J, Simkova M, Vaneckova J (2005) Low-dose methotrexate pharmacokinetics and pharmacodynamics in the therapy of severe psoriasis. Basic Clin Pharmacol Toxicol 96:247–248

    Article  PubMed  CAS  Google Scholar 

  75. Chladek J, Grim J, Martinkova J, Simkova M, Vaniekova J, Koudelkova V, Noiekova M (2002) Pharmacokinetics and pharmacodynamics of low-dose methotrexate in the treatment of psoriasis. Br J Clin Pharmacol 54:147–156

    Article  PubMed  CAS  Google Scholar 

  76. Chiu TL, So SS (2004) Development of neural network QSPR models for Hansch substituent constants. 2. Applications in QSAR studies of HIV-1 reverse transcriptase and dihydrofolate reductase inhibitors. J Chem Inf Comput Sci 44:154–160

    Article  PubMed  CAS  Google Scholar 

  77. Dasgupta T, Chitnumsub P, Kamchonwongpaisan S, Maneeruttanarungroj C, Nichols SE, Lyons TM, Tirado-Rives J, Jorgensen WL, Yuthavong Y, Anderson KS (2009) Exploiting structural analysis, in silico screening, and serendipity to identify novel inhibitors of drug-resistant falciparum malaria. ACS Chem Biol 4:29–40

    Article  PubMed  CAS  Google Scholar 

  78. Hecht D, Fogel GB (2009) A novel in silico approach to drug discovery via computational intelligence. J Chem Inf Model 49:1105–1121

    Article  PubMed  CAS  Google Scholar 

  79. Maitarad P, Kamchonwongpaisan S, Vanichtanankul J, Vilaivan T, Yuthavong Y, Hannongbua S (2009) Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases. J Comput Aided Mol Des 23:241–252

    Article  PubMed  CAS  Google Scholar 

  80. Thongpanchang C, Taweechai S, Kamchonwongpaisan S, Yuthavong Y, Thebtaranonth Y (2007) Immobilization of malarial (Plasmodium falciparum) dihydrofolate reductase for the selection of tight-binding inhibitors from combinatorial library. Anal Chem 79:5006–5012

    Article  PubMed  CAS  Google Scholar 

  81. MMV. http://www.mmv.org/IMG/pdf/Global_Malaria_FINALq42009.pdf. Accessed 11 Jan 2011

Download references

Acknowledgments

The author thanks the director of Kenya Medical Research Institute for permission to publish these data. This work was supported by the European Developing Countries Clinical Trials Partnership (EDTCP).

Transparency Declarations None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Nzila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Nzila, A. (2011). Antifolates: Pyrimethamine, Proguanil, Sulphadoxine and Dapsone. In: Staines, H., Krishna, S. (eds) Treatment and Prevention of Malaria. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0480-2_6

Download citation

Publish with us

Policies and ethics