Skip to main content

Cinchona Alkaloids: Quinine and Quinidine

  • Chapter
  • First Online:
Treatment and Prevention of Malaria

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

For 400 years, quinine has been the effective antimalarial. From a pulverized bark, which stopped cyclic fevers, to an easily isolated crystal alkaloid, which launched many pharmaceutical companies, tons of quinine are still purified for medicinal and beverage use. The quest for quinine synthesis pioneered early medicinal dyes, antibacterials, and other drugs. In a specialized Plasmodium lysosome for hemoglobin degradation, quinine binds heme, which inhibits heme crystallization to kill rapidly. Although quinine drug resistance was described 100 years ago, unlike chloroquinine or the antifolates that have been rendered ineffective by the spread of resistant mutants, quinine has only a few persistent, resistant parasites worldwide. The artemisinin drugs, superior to quinine for severe malaria, have greatly reduced the use of quinine as an antimalarial. Evidence for prolonged artemisinin parasite clearance times both renews the quest for rapidly parasiticidal drugs for severe malaria and possibly holds a place for quinine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruce-Chwatt LJ (1988) Three hundred and fifty years of the Peruvian fever bark. Br Med J (Clin Res Ed) 296:1486–1487

    Article  CAS  Google Scholar 

  2. Petithory JC (1995) [On the discovery of the parasite of malaria by A. Laveran: Bone 1878–Constantine 1880]. Hist Sci Med 29:57–62

    PubMed  Google Scholar 

  3. Guttmann P, Ehrlich P (1891) Ueber die Wirkung des Methylenblau bei Malaria. Berlin Klin Wochenschr 28:953–956

    Google Scholar 

  4. Vennerstrom JL, Makler MT, Angerhofer CK, Williams JA (1995) Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines. Antimicrob Agents Chemother 39:2671–2677

    Article  PubMed  CAS  Google Scholar 

  5. Greenwood D (1992) The quinine connection. J Antimicrob Chemother 30:417–427

    Article  PubMed  CAS  Google Scholar 

  6. Guerra F (1977) The introduction of cinchona in the treatment of malaria. Part II. J Trop Med Hyg 80:135–140

    PubMed  CAS  Google Scholar 

  7. Guerra F (1977) The introduction of Cinchona in the treatment of malaria. Part I. J Trop Med Hyg 80:112–118

    PubMed  CAS  Google Scholar 

  8. Garnham PC (1966) Malaria parasites and other haemosporidia. Blackwell Scientific, Oxford

    Google Scholar 

  9. Bruce-Chwatt LJ (1982) Oliver Cromwell’s medical history. Trans Stud Coll Physicians Phila 4:98–121

    PubMed  CAS  Google Scholar 

  10. Vane JR (2000) The fight against rheumatism: from willow bark to COX-1 sparing drugs. J Physiol Pharmacol 51:573–586

    PubMed  CAS  Google Scholar 

  11. Greenwood D (1995) Conflicts of interest: the genesis of synthetic antimalarial agents in peace and war. J Antimicrob Chemother 36:857–872

    Article  PubMed  CAS  Google Scholar 

  12. Gramiccia G (1987) Ledger’s cinchona seeds: a composite of field experience, chance, and intuition. Parassitologia 29:207–220

    PubMed  CAS  Google Scholar 

  13. Delepine M (1951) Joseph Pelletier and Joseph Caventou. J Chem Educ 28:454–461

    Article  CAS  Google Scholar 

  14. (1890) CXXVIII – Manufacture of quinine in India. Bull Misc Inf (Royal Gardens, Kew) 1890:29–34; www.jstororg/stable/4118253

  15. Rocco F (2003) Quinine, malaria and the quest for a cure that changed the world. Perrenial, New York

    Google Scholar 

  16. Strecker A (1854) On the constitution of quinine. Lond Edinb Dublin Philos Mag J Sci 8:123–125

    Google Scholar 

  17. Johnston WT (2008) The discovery of aniline and the origin of the term “aniline dye”. Biotech Histochem 83:83–87

    Article  PubMed  CAS  Google Scholar 

  18. Steverding D (2010) The development of drugs for treatment of sleeping sickness: a historical review. Parasit Vectors 3:15

    Article  PubMed  CAS  Google Scholar 

  19. Gensini GF, Conti AA, Lippi D (2007) The contributions of Paul Ehrlich to infectious disease. J Infect 54:221–224

    Article  PubMed  Google Scholar 

  20. Frankenburg FR, Baldessarini RJ (2008) Neurosyphilis, malaria, and the discovery of antipsychotic agents. Harv Rev Psychiatry 16:299–307

    Article  PubMed  Google Scholar 

  21. Horlein H (1936) The chemotherapy of infectious diseases caused by protozoa and bacteria: (Section of tropical diseases and parasitology). Proc R Soc Med 29:313–324

    PubMed  CAS  Google Scholar 

  22. Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP (1962) 1,8-Naphthyridine derivatives: a new class of chemotherapeutic agents. J Med Pharm Chem 91:1063–1065

    Article  PubMed  CAS  Google Scholar 

  23. Andriole VT (2005) The quinolones: past, present, and future. Clin Infect Dis 41(Suppl 2):S113–119

    Article  PubMed  CAS  Google Scholar 

  24. Krishna S, Davis TM, Chan PC, Wells RA, Robson KJ (1988) Ciprofloxacin and malaria. Lancet 1:1231–1232

    Article  PubMed  CAS  Google Scholar 

  25. Mahmoudi N, Ciceron L, Franetich JF, Farhati K, Silvie O, Eling W, Sauerwein R, Danis M, Mazier D, Derouin F (2003) In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrob Agents Chemother 47:2636–2639

    Article  PubMed  CAS  Google Scholar 

  26. Seeman J (2007) The Woodward-Doering/Rabe-Kindler total synthesis of quinine: setting the record straight. Angew Chem Int Ed Engl 46:1378–1413

    Article  PubMed  CAS  Google Scholar 

  27. Stork G, Niu D, Fujimoto RA, Koft ER, Balkovec JM, Tata JR, Dake GR (2001) The first stereoselective total synthesis of quinine. J Am Chem Soc 123:3239–3242

    Article  PubMed  CAS  Google Scholar 

  28. Woodward RB, Doering WE (1944) The total synthesis of quinine. JACS 66:849

    Google Scholar 

  29. ter Kuile F, White NJ, Holloway P, Pasvol G, Krishna S (1993) Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp Parasitol 76:85–95

    Article  PubMed  Google Scholar 

  30. Price RN, Nosten F, Luxemburger C, ter Kuile FO, Paiphun L, Chongsuphajaisiddhi T, White NJ (1996) Effects of artemisinin derivatives on malaria transmissibility. Lancet 347:1654–1658

    Article  PubMed  CAS  Google Scholar 

  31. Fink E (1974) Assessment of causal prophylactic activity in Plasmodium berghei yoelii and its value for the development of new antimalarial drugs. Bull World Health Organ 50:213–222

    PubMed  CAS  Google Scholar 

  32. Brown PJ (1997) Malaria, miseria, and underpopulation in Sardinia: the “malaria blocks development” cultural model. Med Anthropol 17:239–254

    Article  PubMed  CAS  Google Scholar 

  33. Davies EE, Warhurst DC, Peters W (1975) The chemotherapy of rodent malaria, XXI. Action of quinine and WR 122 (a 9-phenanthrenemethanol) on the fine structure of Plasmodium berghei in mouse blood. Ann Trop Med Parasitol 69:147–153

    PubMed  CAS  Google Scholar 

  34. Gligorijevic B, Purdy K, Elliott DA, Cooper RA, Roepe PD (2008) Stage independent chloroquine resistance and chloroquine toxicity revealed via spinning disk confocal microscopy. Mol Biochem Parasitol 159:7–23

    Article  PubMed  CAS  Google Scholar 

  35. Slater AF (1993) Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol Ther 57:203–235

    Article  PubMed  CAS  Google Scholar 

  36. Warhurst DC, Craig JC, Adagu IS, Meyer DJ, Lee SY (2003) The relationship of physico-chemical properties and structure to the differential antiplasmodial activity of the cinchona alkaloids. Malar J 2:26

    Article  PubMed  Google Scholar 

  37. Ginsburg H, Geary TG (1987) Current concepts and new ideas on the mechanism of action of quinoline-containing antimalarials. Biochem Pharmacol 36:1567–1576

    Article  PubMed  CAS  Google Scholar 

  38. Ginsburg H, Golenser J (2003) Glutathione is involved in the antimalarial action of chloroquine and its modulation affects drug sensitivity of human and murine species of Plasmodium. Redox Rep 8:276–279

    Article  PubMed  CAS  Google Scholar 

  39. Sullivan DJ Jr, Matile H, Ridley RG, Goldberg DE (1998) A common mechanism for blockade of heme polymerization by antimalarial quinolines. J Biol Chem 273:31103–31107

    Article  PubMed  CAS  Google Scholar 

  40. Sullivan DJ Jr, Gluzman IY, Russell DG, Goldberg DE (1996) On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci USA 93:11865–11870

    Article  PubMed  CAS  Google Scholar 

  41. Egan TJ, Mavuso WW, Ross DC, Marques HM (1997) Thermodynamic factors controlling the interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX. J Inorg Biochem 68:137–145

    Article  PubMed  CAS  Google Scholar 

  42. de Villiers KA, Marques HM, Egan TJ (2008) The crystal structure of halofantrine-ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. J Inorg Biochem 102:1660–1667

    Article  PubMed  CAS  Google Scholar 

  43. Leed A, DuBay K, Ursos LM, Sears D, De Dios AC, Roepe PD (2002) Solution structures of antimalarial drug-heme complexes. Biochemistry 41:10245–10255

    Article  PubMed  CAS  Google Scholar 

  44. Alumasa JN, Gorka AP, Casabianca LB, Comstock E, de Dios AC, Roepe PD (2011) The hydroxyl functionality and a rigid proximal N are required for forming a novel non-covalent quinine-heme complex. J Inorg Biochem 105:467–475

    Article  PubMed  CAS  Google Scholar 

  45. Chong CR, Sullivan DJ Jr (2003) Inhibition of heme crystal growth by antimalarials and other compounds: implications for drug discovery. Biochem Pharmacol 66:2201–2212

    Article  PubMed  CAS  Google Scholar 

  46. Ellekvist P, Maciel J, Mlambo G, Ricke CH, Colding H, Klaerke DA, Kumar N (2008) Critical role of a K+ channel in Plasmodium berghei transmission revealed by targeted gene disruption. Proc Natl Acad Sci USA 105:6398–6402

    Article  PubMed  CAS  Google Scholar 

  47. Waller KL, Kim K, McDonald TV (2008) Plasmodium falciparum: growth response to potassium channel blocking compounds. Exp Parasitol 120:280–285

    Article  PubMed  CAS  Google Scholar 

  48. Waller KL, McBride SM, Kim K, McDonald TV (2008) Characterization of two putative potassium channels in Plasmodium falciparum. Malar J 7:19

    Article  PubMed  CAS  Google Scholar 

  49. Sanchez-Chapula JA, Ferrer T, Navarro-Polanco RA, Sanguinetti MC (2003) Voltage-dependent profile of human ether-a-go-go-related gene channel block is influenced by a single residue in the S6 transmembrane domain. Mol Pharmacol 63:1051–1058

    Article  PubMed  CAS  Google Scholar 

  50. Becchetti A, De Fusco M, Crociani O, Cherubini A, Restano-Cassulini R, Lecchi M, Masi A, Arcangeli A, Casari G, Wanke E (2002) The functional properties of the human ether-a-go-go-like (HELK2) K+ channel. Eur J Neurosci 16:415–428

    Article  PubMed  Google Scholar 

  51. Kuryshev YA, Ficker E, Wang L, Hawryluk P, Dennis AT, Wible BA, Brown AM, Kang J, Chen XL, Sawamura K et al (2005) Pentamidine-induced long QT syndrome and block of hERG trafficking. J Pharmacol Exp Ther 312:316–323

    Article  PubMed  CAS  Google Scholar 

  52. White NJ (2004) Antimalarial drug resistance. J Clin Invest 113:1084–1092

    PubMed  CAS  Google Scholar 

  53. Le Jouan M, Jullien V, Tetanye E, Tran A, Rey E, Treluyer JM, Tod M, Pons G (2005) Quinine pharmacokinetics and pharmacodynamics in children with malaria caused by Plasmodium falciparum. Antimicrob Agents Chemother 49:3658–3662

    Article  PubMed  CAS  Google Scholar 

  54. Pukrittayakamee S, Wanwimolruk S, Stepniewska K, Jantra A, Huyakorn S, Looareesuwan S, White NJ (2003) Quinine pharmacokinetic-pharmacodynamic relationships in uncomplicated falciparum malaria. Antimicrob Agents Chemother 47:3458–3463

    Article  PubMed  CAS  Google Scholar 

  55. Karbwang J, Harinasuta T (1992) Overview: clinical pharmacology of antimalarials. SE Asian J Trop Med Public Health 23(Suppl 4):95–109

    Google Scholar 

  56. Caramello P, Canta F, Cavecchia I, Sergi G, Lipani F, Calleri G, Gobbi F, Di Perri G (2005) Pharmacodynamic analysis of antimalarials used in Plasmodium falciparum imported malaria in northern Italy. J Travel Med 12:127–132

    Article  PubMed  Google Scholar 

  57. Mapaba E, Hellgren U, Landberg-Lindgren A, Rombo L (1995) Susceptibility of Plasmodium falciparum to quinine in vitro: effects of drug concentrations and time of exposure. Trans R Soc Trop Med Hyg 89:85–89

    Article  PubMed  CAS  Google Scholar 

  58. Cooper RA, Lane KD, Deng B, Mu J, Patel JJ, Wellems TE, Su X, Ferdig MT (2007) Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Mol Microbiol 63:270–282

    Article  PubMed  CAS  Google Scholar 

  59. Karle JM, Karle IL, Gerena L, Milhous WK (1992) Stereochemical evaluation of the relative activities of the cinchona alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 36:1538–1544

    Article  PubMed  CAS  Google Scholar 

  60. Karle JM, Bhattacharjee AK (1999) Stereoelectronic features of the cinchona alkaloids determine their differential antimalarial activity. Bioorg Med Chem 7:1769–1774

    Article  PubMed  CAS  Google Scholar 

  61. Brocks DR, Mehvar R (2003) Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs. Clin Pharmacokinet 42:1359–1382

    Article  PubMed  CAS  Google Scholar 

  62. Basco LK, Le Bras J (1992) In vitro activity of halofantrine and its relationship to other standard antimalarial drugs against African isolates and clones of Plasmodium falciparum. Am J Trop Med Hyg 47:521–527

    PubMed  CAS  Google Scholar 

  63. White NJ (1998) Why is it that antimalarial drug treatments do not always work? Ann Trop Med Parasitol 92:449–458

    Article  PubMed  CAS  Google Scholar 

  64. Weinke T, Held T, Trautmann M, Rogler G, Mravak S, Alexander M, Pohle HD (1992) Malaria therapy in 452 patients, with special reference to the use of quinine. J Infect 25:173–180

    Article  PubMed  CAS  Google Scholar 

  65. Newton PN, Green MD, Fernandez FM (2010) Impact of poor-quality medicines in the ‘developing’ world. Trends Pharmacol Sci 31:99–101

    Article  PubMed  CAS  Google Scholar 

  66. Basco LK (2004) Molecular epidemiology of malaria in Cameroon. XIX. Quality of antimalarial drugs used for self-medication. Am J Trop Med Hyg 70:245–250

    PubMed  CAS  Google Scholar 

  67. Fletcher W (1923) Notes on the treatment of malaria with the alkaloids of cinchona. John Bale, London

    Google Scholar 

  68. Looareesuwan S, Charoenpan P, Ho M, White NJ, Karbwang J, Bunnag D, Harinasuta T (1990) Fatal Plasmodium falciparum malaria after an inadequate response to quinine treatment. J Infect Dis 161:577–580

    Article  PubMed  CAS  Google Scholar 

  69. Peters W (1969) Drug resistance in malaria – a perspective. Trans R Soc Trop Med Hyg 63:25–45

    Article  PubMed  CAS  Google Scholar 

  70. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC et al (2003) Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49:977–989

    Article  PubMed  CAS  Google Scholar 

  71. Brandicourt O, Druilhe P, Diouf F, Brasseur P, Turk P, Danis M (1986) Decreased sensitivity to chloroquine and quinine of some Plasmodium falciparum strains from Senegal in September 1984. Am J Trop Med Hyg 35:717–721

    PubMed  CAS  Google Scholar 

  72. Benito A, Roche J, Molina R, Amela C, Alvar J (1995) In vitro susceptibility of Plasmodium falciparum to chloroquine, amodiaquine, quinine, mefloquine, and sulfadoxine/pyrimethamine in Equatorial Guinea. Am J Trop Med Hyg 53:526–531

    PubMed  CAS  Google Scholar 

  73. Pradines B, Rogier C, Fusai T, Tall A, Trape JF, Doury JC (1996) In vitro sensitivity of 85 Plasmodium falciparum isolates in the Fatick region, Senegal. Med Trop (Mars) 56:141–145

    CAS  Google Scholar 

  74. Pradines B, Tall A, Parzy D, Spiegel A, Fusai T, Hienne R, Trape JF, Doury JC (1998) In-vitro activity of pyronaridine and amodiaquine against African isolates (Senegal) of Plasmodium falciparum in comparison with standard antimalarial agents. J Antimicrob Chemother 42:333–339

    Article  PubMed  CAS  Google Scholar 

  75. Takechi M, Matsuo M, Ziba C, MacHeso A, Butao D, Zungu IL, Chakanika I, Bustos MD (2001) Therapeutic efficacy of sulphadoxine/pyrimethamine and susceptibility in vitro of P. falciparum isolates to sulphadoxine-pyremethamine and other antimalarial drugs in Malawian children. Trop Med Int Health 6:429–434

    Article  PubMed  CAS  Google Scholar 

  76. Pradines B, Tall A, Rogier C, Spiegel A, Mosnier J, Marrama L, Fusai T, Millet P, Panconi E, Trape JF et al (2002) In vitro activities of ferrochloroquine against 55 Senegalese isolates of Plasmodium falciparum in comparison with those of standard antimalarial drugs. Trop Med Int Health 7:265–270

    Article  PubMed  CAS  Google Scholar 

  77. Pradines B, Fusai T, Daries W, Laloge V, Rogier C, Millet P, Panconi E, Kombila M, Parzy D (2001) Ferrocene-chloroquine analogues as antimalarial agents: in vitro activity of ferrochloroquine against 103 Gabonese isolates of Plasmodium falciparum. J Antimicrob Chemother 48:179–184

    Article  PubMed  CAS  Google Scholar 

  78. Agnamey P, Brasseur P, de Pecoulas PE, Vaillant M, Olliaro P (2006) Plasmodium falciparum in vitro susceptibility to antimalarial drugs in Casamance (southwestern Senegal) during the first 5 years of routine use of artesunate-amodiaquine. Antimicrob Agents Chemother 50:1531–1534

    Article  PubMed  CAS  Google Scholar 

  79. Tinto H, Rwagacondo C, Karema C, Mupfasoni D, Vandoren W, Rusanganwa E, Erhart A, Van Overmeir C, Van Marck E, D’Alessandro U (2006) In-vitro susceptibility of Plasmodium falciparum to monodesethylamodiaquine, dihydroartemisinin and quinine in an area of high chloroquine resistance in Rwanda. Trans R Soc Trop Med Hyg 100:509–514

    Article  PubMed  CAS  Google Scholar 

  80. Pradines B, Hovette P, Fusai T, Atanda HL, Baret E, Cheval P, Mosnier J, Callec A, Cren J, Amalvict R et al (2006) Prevalence of in vitro resistance to eleven standard or new antimalarial drugs among Plasmodium falciparum isolates from Pointe-Noire, Republic of the Congo. J Clin Microbiol 44:2404–2408

    Article  PubMed  CAS  Google Scholar 

  81. Nsobya SL, Kiggundu M, Nanyunja S, Joloba M, Greenhouse B, Rosenthal PJ (2010) In vitro sensitivities of Plasmodium falciparum to different antimalarial drugs in Uganda. Antimicrob Agents Chemother 54:1200–1206

    Article  PubMed  CAS  Google Scholar 

  82. Andriantsoanirina V, Menard D, Rabearimanana S, Hubert V, Bouchier C, Tichit M, Bras JL, Durand R (2010) Association of microsatellite variations of Plasmodium falciparum Na+/H+ exchanger (Pfnhe-1) gene with reduced in vitro susceptibility to quinine: lack of confirmation in clinical isolates from Africa. Am J Trop Med Hyg 82:782–787

    Article  PubMed  CAS  Google Scholar 

  83. Smrkovski LL, Buck RL, Alcantara AK, Rodriguez CS, Uylangco CV (1985) Studies of resistance to chloroquine, quinine, amodiaquine and mefloquine among Philippine strains of Plasmodium falciparum. Trans R Soc Trop Med Hyg 79:37–41

    Article  PubMed  CAS  Google Scholar 

  84. Hombhanje FW (1998) In vitro susceptibility of Plasmodium falciparum to four antimalarial drugs in the Central Province of Papua New Guinea. P N G Med J 41:51–58

    PubMed  CAS  Google Scholar 

  85. Noedl H, Faiz MA, Yunus EB, Rahman MR, Hossain MA, Samad R, Miller RS, Pang LW, Wongsrichanalai C (2003) Drug-resistant malaria in Bangladesh: an in vitro assessment. Am J Trop Med Hyg 68:140–142

    PubMed  CAS  Google Scholar 

  86. Chaijaroenkul W, Bangchang KN, Mungthin M, Ward SA (2005) In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003. Malar J 4:37

    Article  PubMed  CAS  Google Scholar 

  87. Lim P, Chim P, Sem R, Nemh S, Poravuth Y, Lim C, Seila S, Tsuyuoka R, Denis MB, Socheat D et al (2005) In vitro monitoring of Plasmodium falciparum susceptibility to artesunate, mefloquine, quinine and chloroquine in Cambodia: 2001–2002. Acta Trop 93:31–40

    Article  PubMed  CAS  Google Scholar 

  88. Chaijaroenkul W, Wisedpanichkij R, Na-Bangchang K (2010) Monitoring of in vitro susceptibilities and molecular markers of resistance of Plasmodium falciparum isolates from Thai-Myanmar border to chloroquine, quinine, mefloquine and artesunate. Acta Trop 113:190–194

    Article  PubMed  CAS  Google Scholar 

  89. Legrand E, Volney B, Meynard JB, Mercereau-Puijalon O, Esterre P (2008) In vitro monitoring of Plasmodium falciparum drug resistance in French Guiana: a synopsis of continuous assessment from 1994 to 2005. Antimicrob Agents Chemother 52:288–298

    Article  PubMed  CAS  Google Scholar 

  90. Cerutti Junior C, Marques C, Alencar FE, Durlacher RR, Alween A, Segurado AA, Pang LW, Zalis MG (1999) Antimalarial drug susceptibility testing of Plasmodium falciparum in Brazil using a radioisotope method. Mem Inst Oswaldo Cruz 94:803–809

    Article  PubMed  CAS  Google Scholar 

  91. Lim P, Wongsrichanalai C, Chim P, Khim N, Kim S, Chy S, Sem R, Nhem S, Yi P, Duong S et al (2010) Decreased in vitro susceptibility of Plasmodium falciparum isolates to artesunate, mefloquine, chloroquine, and quinine in Cambodia from 2001 to 2007. Antimicrob Agents Chemother 54:2135–2142

    Article  PubMed  CAS  Google Scholar 

  92. Young MD, Eyles DE (1948) The efficacy of chloroquine, quinacrine, quinine and totaquine in the treatment of Plasmodium malariae infections (quartan malaria). Am J Trop Med Hyg 28:23–28

    PubMed  CAS  Google Scholar 

  93. Sanchez CP, Stein WD, Lanzer M (2008) Dissecting the components of quinine accumulation in Plasmodium falciparum. Mol Microbiol 67:1081–1093

    Article  PubMed  CAS  Google Scholar 

  94. Cabrera M, Paguio MF, Xie C, Roepe PD (2009) Reduced digestive vacuolar accumulation of chloroquine is not linked to resistance to chloroquine toxicity. Biochemistry 48:11152–11154

    Article  PubMed  CAS  Google Scholar 

  95. Nkrumah LJ, Riegelhaupt PM, Moura P, Johnson DJ, Patel J, Hayton K, Ferdig MT, Wellems TE, Akabas MH, Fidock DA (2009) Probing the multifactorial basis of Plasmodium falciparum quinine resistance: evidence for a strain-specific contribution of the sodium-proton exchanger PfNHE. Mol Biochem Parasitol 165:122–131

    Article  PubMed  CAS  Google Scholar 

  96. Ursing J, Zakeri S, Gil JP, Bjorkman A (2006) Quinoline resistance associated polymorphisms in the pfcrt, pfmdr1 and pfmrp genes of Plasmodium falciparum in Iran. Acta Trop 97:352–356

    Article  PubMed  CAS  Google Scholar 

  97. Sanchez CP, Rotmann A, Stein WD, Lanzer M (2008) Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum. Mol Microbiol 70:786–798

    PubMed  CAS  Google Scholar 

  98. Pleeter P, Lekostaj JK, Roepe PD (2010) Purified Plasmodium falciparum multi-drug resistance protein (PfMDR 1) binds a high affinity chloroquine analogue. Mol Biochem Parasitol 173:158–161

    Article  PubMed  CAS  Google Scholar 

  99. Cooper RA, Ferdig MT, Su XZ, Ursos LM, Mu J, Nomura T, Fujioka H, Fidock DA, Roepe PD, Wellems TE (2002) Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol 61:35–42

    Article  PubMed  CAS  Google Scholar 

  100. Henry M, Briolant S, Zettor A, Pelleau S, Baragatti M, Baret E, Mosnier J, Amalvict R, Fusai T, Rogier C et al (2009) Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine. Antimicrob Agents Chemother 53:1926–1930

    Article  PubMed  CAS  Google Scholar 

  101. Langford NJ, Good AM, Laing WJ, Bateman DN (2003) Quinine intoxications reported to the Scottish Poisons Information Bureau 1997–2002: a continuing problem. Br J Clin Pharmacol 56:576–578

    Article  PubMed  CAS  Google Scholar 

  102. Taylor WR, White NJ (2004) Antimalarial drug toxicity: a review. Drug Saf 27:25–61

    Article  PubMed  CAS  Google Scholar 

  103. Touze JE, Heno P, Fourcade L, Deharo JC, Thomas G, Bohan S, Paule P, Riviere P, Kouassi E, Buguet A (2002) The effects of antimalarial drugs on ventricular repolarization. Am J Trop Med Hyg 67:54–60

    PubMed  CAS  Google Scholar 

  104. Gous P, Haus M (1990) Intravenous flunarizine therapy for acute toxicity in malaria. S Afr Med J 77:217

    PubMed  CAS  Google Scholar 

  105. Bacon P, Spalton DJ, Smith SE (1988) Blindness from quinine toxicity. Br J Ophthalmol 72:219–224

    Article  PubMed  CAS  Google Scholar 

  106. Dyson EH, Proudfoot AT, Prescott LF, Heyworth R (1985) Death and blindness due to overdose of quinine. Br Med J (Clin Res Ed) 291:31–33

    Article  CAS  Google Scholar 

  107. Dickinson P, Sabto J, West RH (1981) Management of quinine toxicity. Trans Ophthalmol Soc N Z 33:56–58

    PubMed  CAS  Google Scholar 

  108. Hill J (1963) Part 2: The antimalarial drugs. In: Schnitzer RJ, Hawking F (eds) Experimental chemotherapy, vol 1. Academic, New York, pp 513–602

    Google Scholar 

  109. George CR (2009) Blackwater fever: the rise and fall of an exotic disease. J Nephrol22(Suppl 14):120–128

    PubMed  Google Scholar 

  110. Bruce-Chwatt LJ (1987) Quinine and the mystery of blackwater fever. Acta Leiden 55:181–196

    PubMed  CAS  Google Scholar 

  111. Rogier C, Imbert P, Tall A, Sokhna C, Spiegel A, Trape JF (2003) Epidemiological and clinical aspects of blackwater fever among African children suffering frequent malaria attacks. Trans R Soc Trop Med Hyg 97:193–197

    Article  PubMed  Google Scholar 

  112. Bruneel F, Gachot B, Wolff M, Regnier B, Danis M, Vachon F (2001) Resurgence of blackwater fever in long-term European expatriates in Africa: report of 21 cases and review. Clin Infect Dis 32:1133–1140

    Article  PubMed  CAS  Google Scholar 

  113. Van den Ende J, Coppens G, Verstraeten T, Van Haegenborgh T, Depraetere K, Van Gompel A, Van den Enden E, Clerinx J, Colebunders R, Peetermans WE et al (1998) Recurrence of blackwater fever: triggering of relapses by different antimalarials. Trop Med Int Health 3:632–639

    Article  PubMed  Google Scholar 

  114. Vipan WH (1865) Quinine as a cause of purpura. Lancet 86:37

    Article  Google Scholar 

  115. Aster RH (1999) Drug-induced immune thrombocytopenia: an overview of pathogenesis. Semin Hematol 36:2–6

    PubMed  CAS  Google Scholar 

  116. Zakarija A, Bennett C (2005) Drug-induced thrombotic microangiopathy. Semin Thromb Hemost 31:681–690

    Article  PubMed  CAS  Google Scholar 

  117. Burgess JK, Lopez JA, Berndt MC, Dawes I, Chesterman CN, Chong BH (1998) Quinine-dependent antibodies bind a restricted set of epitopes on the glycoprotein Ib-IX complex: characterization of the epitopes. Blood 92:2366–2373

    PubMed  CAS  Google Scholar 

  118. Park YA, Hay SN, King KE, Matevosyan K, Poisson J, Powers A, Sarode R, Shaz B, Brecher ME (2009) Is it quinine TTP/HUS or quinine TMA? ADAMTS13 levels and implications for therapy. J Clin Apher 24:115–119

    Article  PubMed  Google Scholar 

  119. Boehme MW, Werle E, Kommerell B, Raeth U (1994) Serum levels of adhesion molecules and thrombomodulin as indicators of vascular injury in severe Plasmodium falciparum malaria. Clin Investig 72:598–603

    Article  PubMed  CAS  Google Scholar 

  120. Kojouri K, Vesely SK, George JN (2001) Quinine-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: frequency, clinical features, and long-term outcomes. Ann Intern Med 135:1047–1051

    PubMed  CAS  Google Scholar 

  121. Brinker AD, Beitz J (2002) Spontaneous reports of thrombocytopenia in association with quinine: clinical attributes and timing related to regulatory action. Am J Hematol 70:313–317

    Article  PubMed  Google Scholar 

  122. (2010) Safety of quinine. Med Lett Drugs Ther, 52:88

    Google Scholar 

  123. El-Tawil S, Al Musa T, Valli H, Lunn MP, El-Tawil T, Weber M (2010) Quinine for muscle cramps. Cochrane Database Syst Rev 12:CD005044

    Google Scholar 

  124. Yeager OW, Reider RF, Mc DG (1946) Evaluation of totaquine in treatment of malaria in an endemic malarious area. J Am Pharm Assoc Am Pharm Assoc 35:337

    Google Scholar 

  125. Taggart JV, Earle DP Jr et al (1948) Studies on the chemotherapy of the human malarias; the physiological disposition and antimalarial activity of the cinchona alkaloids. J Clin Invest 27:80–86

    Article  CAS  Google Scholar 

  126. Earle DP Jr, Welch WJ, Shannon JA et al (1948) Studies on the chemotherapy of the human malarias the metabolism of cinchonine in relation to its antimalarial activity. J Clin Invest 27:87–92

    Article  CAS  Google Scholar 

  127. White NJ (1985) Clinical pharmacokinetics of antimalarial drugs. Clin Pharmacokinet 10:187–215

    Article  PubMed  CAS  Google Scholar 

  128. White NJ, Looareesuwan S, Warrell DA, Warrell MJ, Bunnag D, Harinasuta T (1982) Quinine pharmacokinetics and toxicity in cerebral and uncomplicated falciparum malaria. Am J Med 73:564–572

    Article  PubMed  CAS  Google Scholar 

  129. Zhao XJ, Yokoyama H, Chiba K, Wanwimolruk S, Ishizaki T (1996) Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther 279:1327–1334

    PubMed  CAS  Google Scholar 

  130. Hutzler JM, Walker GS, Wienkers LC (2003) Inhibition of cytochrome P450 2D6: structure-activity studies using a series of quinidine and quinine analogues. Chem Res Toxicol 16:450–459

    Article  PubMed  CAS  Google Scholar 

  131. Soyinka JO, Onyeji CO, Omoruyi SI, Owolabi AR, Sarma PV, Cook JM (2010) Pharmacokinetic interactions between ritonavir and quinine in healthy volunteers following concurrent administration. Br J Clin Pharmacol 69:262–270

    Article  PubMed  CAS  Google Scholar 

  132. Soyinka JO, Onyeji CO, Omoruyi SI, Owolabi AR, Sarma PV, Cook JM (2009) Effects of concurrent administration of nevirapine on the disposition of quinine in healthy volunteers. J Pharm Pharmacol 61:439–443

    Article  PubMed  CAS  Google Scholar 

  133. Nosten F, McGready R, D’Alessandro U, Bonell A, Verhoeff F, Menendez C, Mutabingwa T, Brabin B (2006) Antimalarial drugs in pregnancy: a review. Curr Drug Saf 1:1–15

    Article  PubMed  CAS  Google Scholar 

  134. Donovan JL, DeVane CL, Boulton D, Dodd S, Markowitz JS (2003) Dietary levels of quinine in tonic water do not inhibit CYP2D6 in vivo. Food Chem Toxicol 41:1199–1201

    Article  PubMed  CAS  Google Scholar 

  135. Taggart JV, Earle DP, Berliner RW, Zubrod CG, Welch WJ, Wise NB, Schroeder EF, London IM, Shannon JA (1948) Studies on the chemotherapy of the human malarias. III. The physiological disposition and antimalarial activity of the cinchona alkaloids. J Clin Invest 27:80–86

    Article  CAS  Google Scholar 

  136. Krishna S, White NJ (1996) Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet 30:263–299

    Article  PubMed  CAS  Google Scholar 

  137. Krishna S, Nagaraja NV, Planche T, Agbenyega T, Bedo-Addo G, Ansong D, Owusu-Ofori A, Shroads AL, Henderson G, Hutson A et al (2001) Population pharmacokinetics of intramuscular quinine in children with severe malaria. Antimicrob Agents Chemother 45:1803–1809

    Article  PubMed  CAS  Google Scholar 

  138. Watt G, Loesuttivibool L, Shanks GD, Boudreau EF, Brown AE, Pavanand K, Webster HK, Wechgritaya S (1992) Quinine with tetracycline for the treatment of drug-resistant falciparum malaria in Thailand. Am J Trop Med Hyg 47:108–111

    PubMed  CAS  Google Scholar 

  139. Pukrittayakamee S, Chantra A, Vanijanonta S, Clemens R, Looareesuwan S, White NJ (2000) Therapeutic responses to quinine and clindamycin in multidrug-resistant falciparum malaria. Antimicrob Agents Chemother 44:2395–2398

    Article  PubMed  CAS  Google Scholar 

  140. Sinclair D, Donegan S, Lalloo DG: (2011) Artesunate versus quinine for treating severe malaria. Cochrane Database Syst Rev 3:CD005967

    Google Scholar 

  141. Phu NH, Tuan PQ, Day N, Mai NT, Chau TT, Chuong LV, Sinh DX, White NJ, Farrar J, Hien TT (2010) Randomized controlled trial of artesunate or artemether in Vietnamese adults with severe falciparum malaria. Malar J 9:97

    Article  PubMed  CAS  Google Scholar 

  142. Lubell Y, Yeung S, Dondorp AM, Day NP, Nosten F, Tjitra E, Abul Faiz M, Yunus EB, Anstey NM, Mishra SK et al (2009) Cost-effectiveness of artesunate for the treatment of severe malaria. Trop Med Int Health 14:332–337

    Article  PubMed  CAS  Google Scholar 

  143. Jones KL, Donegan S, Lalloo DG: (2007) Artesunate versus quinine for treating severe malaria. Cochrane Database Syst Rev:CD005967

    Google Scholar 

  144. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    Article  PubMed  CAS  Google Scholar 

  145. Witkowski B, Lelievre J, Barragan MJ, Laurent V, Su XZ, Berry A, Benoit-Vical F (2010) Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54:1872–1877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The translation of Arthur Neiva’s account of drug resistance from German and Portuguese by Gundula Bosch is most appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Sullivan, D.J. (2011). Cinchona Alkaloids: Quinine and Quinidine. In: Staines, H., Krishna, S. (eds) Treatment and Prevention of Malaria. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0480-2_3

Download citation

Publish with us

Policies and ethics